

Laboratory for Applied Ontology Institute of Cognitive Science and Technology

Italian National Research Council

Making Basic Ontological **Assumptions:** The DOLCE Experience

Nicola Guarino Laboratory for Applied Ontology Institute for Cognitive Sciences and Technology, National Research Council Trento, Italy

Thanks to all LOA people!

www.loa-cnr.it

- 1. Role of axiomatic, foundational ontologies
- 2. Towards a library of foundational ontologies
- 3. Formal Ontology: basic choices available
- 4. The DOLCE choices
- 5. DOLCE axioms
- 6. DOLCE applications and extensions
- Research activities at LOA
- A new journal: Applied Ontology (www.applied-ontology.org)

The importance of *subtle distinctions*

"Trying to engage with *too many partners too fast* is one of the main reasons that *so many online market makers have foundered*. The transactions they had viewed as simple and routine actually involved many *subtle distinctions in terminology and meaning*"

Harvard Business Review, October 2001

Where subtle distinctions in meaning are important

- 2000 US Presidential elections: is there a *hole*?
- Twin towers catastrophe: how many *events*?

...only ontological analysis solves these problems!!

Ontology Quality: Precision and Coverage

www.loa-cnr.it

Why precision is important

When is a foundational ontology useful?

- 1. When *subtle distinctions* are important
- 2. When *recognizing disagreement* is important
- 3. When *rigorous referential semantics* is important
- 4. When *general abstractions* are important
- 5. When *careful explanation and justification* of ontological commitment is important
- 6. When *mutual understanding* is more important than interoperability.

Community-based Access vs. Global Knowledge Access

different roles of ontologies

Community-based access

- Intended meaning of terms known in advance
- *Taxonomic reasoning* is the main ontology service
- Limited expressivity
- **On-line reasoning** (stringent computational requirements)

Global knowledge access

- *Negotiate meaning* across different communities
- Establish consensus about meaning of a new term within a community
- *Explain meaning* of a term to somebody new to community
- *Higher expressivity* required to express intended meaning
- **Off-line reasoning** (only needed **once**, before cooperation process starts)

The WonderWeb Foundational Ontologies Library (WFOL)

- No single upper level
- Rather, a (small) set of *foundational ontologies* carefully *justified* and *positioned* with respect to the space of possible choices, reflecting different commitments and purposes
- **Basic options** clearly documented
- Clear *branching points* to allow for easy comparison of ontological options
- A *starting point* for building new ontologies
- A *reference point* for easy and rigorous comparison among different ontological approaches
- A common framework for analyzing, harmonizing and integrating existing ontologies and metadata standards

The WFOL architecture (*WonderWeb FP5 project*)

(the library of formal ontologies)

Formal Ontology

- Theory of *formal distinctions and connections* within:
 - entities of the world, as we perceive it (*particulars*)
 - categories we use to talk about such entities (*universals*)
- Why *formal*?
 - Two meanings: *rigorous* and *general*
 - Formal logic: connections between truths neutral wrt truth
 - Formal ontology: connections between things neutral wrt *reality*

Formal Ontological Analysis

- Theory of Essence and Identity
- Theory of Parts (Mereology)
- Theory of Wholes
- Theory of Dependence
- Theory of Composition and Constitution
- Theory of Properties and Qualities

The basis for a common ontology vocabulary

Mereology

• Primitive: *proper part-of* relation (PP)

- asymmetric
- transitive
- Pxy =_{def} PPxy ∨ x=y
- Oxy =_{def} ∃ z(Pzx ∧ Pzy)
- Axioms:

supplementation: $PPxy \rightarrow \exists z (PPzy \land \neg Ozx)$ principle of sum: $\exists z \forall w (Owz \Leftrightarrow (Owx \lor Owy))$

extensionality: $x = y \leftrightarrow \forall w (Pwx \leftrightarrow Pwy)$

Part, Constitution, and Identity

- Structure may change identity
- Mereological extensionality is lost
- *Constitution* links the two entities
- Constitution is asymmetric (implies dependence)

Some Ontological Choices (1)

- Universals, Particulars and Individual Properties
 - Properties
 - a) repeatable *universals*, belonging to different entities
 - b) non-repeatable tropes, inhering only in a specific entity"
 - Particulars
 - a) Aggregations (bundles) of properties
 - b) Properties inhering to some substrate (bare particular)

• Persistence of entities

- How do entities persist?
- How do entities *change* in time?
 - Due to different phases (similar to change in space)
 - Due to (whole) instantiation of different properties at different times?
- How are change and persistence related?

Some Ontological Choices (2)

• Space and Time

- Absolute or relative?
- Atomic or not?

Localization

- Are there entities that are not in space/time (*abstract*)?
- Is it possible to have different entities spatially or spatio-temporally colocalized?

DOLCE: motivating its ontological distinctions

DOLCE a Descriptive Ontology for Linguistic and Cognitive Engineering

- Strong cognitive/linguistic bias:
 - *descriptive* (as opposite to *prescriptive*) attitude
 - Categories mirror cognition, common sense, and the lexical structure of natural language.
- Emphasis on *cognitive invariants*
- Categories as *conceptual containers*: no "deep" metaphysical implications
- Focus on *design rationale* to allow easy comparison with different ontological options
- Rigorous, systematic, interdisciplinary approach
- Rich axiomatization
 - 37 basic categories
 - 7 basic relations
 - 80 axioms, 100 definitions, 20 theorems
- Rigorous quality criteria
- Documentation

DOLCE's basic taxonomy

Endurant		Quality		
Physical			Physica	l
	Amount of matter			Spatial location
	Physical object			
	Feature		Tempora	al
Non-Physical				Temporal location
	Mental object			
	Social object		Abstract	t i i i i i i i i i i i i i i i i i i i
Perdurant		Abstract		
Static			Quality region	
	State			Time region
	Process			Space region
Dynamic				Color region
	Achievement			
	Accomplishment			

DOLCE taxonomy

DOLCE's Basic Ontological Choices

- Endurants (aka *continuants* or *objects*) and Perdurants (aka *occurrences* or *events*)
 - distinct categories connected by the relation of *participation*.
- Qualities
 - Individual entities *inhering in* Endurants or Perdurants
 - can live/change with the objects they inhere in
 - Instance of *quality kinds*, each associated to a **Quality Space** representing the *"values" (qualia)* that qualities (of that kind) can assume. Quality Spaces are neither in time nor in space.
- Multiplicative approach
 - Different Objects/Events can be spatio-temporally co-localized: the relation of *constitution* is considered.

Endurants and Perdurants

- Endurants (3D *continuants*)
 - Need a time-indexed parthood relation
 - Exist in time
 - Can genuinely change in time
 - May have non-essential parts
 - All proper parts are present whenever they are present (wholly presence, no temporal parts)
- Perdurants (4D *occurrences*¹) [Occurrents are occurrence-types]
 - Do not need a time-indexed parthood relation
 - Happen in time
 - Do not change in time (as a whole...)
 - All parts are essential
 - Only some proper parts are present whenever they are present (partial presence,temporal parts)
- Endurants *participate to* Perdurants

1 - The physical view

- Basic *qualities* ascribed to atomic spacetime regions (e.g., mass, electric charge...)
- *Fields* (physical processes) are spatiotemporal distributions of qualities

2 - The cognitive view

- Humans isolate *relevant invariances* on the basis of:
 - Perception (as resulting from evolution)
 - Cognition and cultural experience
 - Language
- A set of *atomic percepts* is associated to each situation
- Synchronic level: *spatial invariants*
 - Unity properties are ascribed to percepts patterns: topological and morphological *wholes* emerge
- Diachronic level: *temporal invariants*
 - Endurants: equivalence relationships among percepts patterns belonging to different situations
 - Perdurants: unity properties are ascribed to percepts patterns belonging to different situations

3 - The linguistic view

and the multiplicative choice

substitutivity tests :

- I am talking here
- *This bunch of molecules is talking
- *What's here now is talking
- This statue is looking at me
- *This piece of marble is looking at me
- This statue has a strange nose
- *This piece of marble has a strange nose
- There is a fly on the nose of this statue
- *There is a fly on the nose of this piece of marble
- There is a fly on this piece of marble

Qualities and qualia

- Linguistic evidence
 - This rose is red
 - Red is a color
 - This rose has a color
 - The color of this rose turned to brown in one week
 - Red is opposite to green and close to brown
 - The patient's temperature is increasing
 - The doctor measured the patient's temperature
- Each endurant and perdurant comes with certain qualities that permanently inhere to it and are unique of it
- Qualities are perceptually mapped into *qualia*, which are regions of *quality spaces*.
- Properties hold because qualities have certain locations in their quality spaces.
- Each quality type has its own quality space

Qualities

The rose and the chair have *the same color*:

- different color qualities inhere to the two objects
- they are located in the same quality region

Therefore, the same color attribute (red) is ascribed to the two objects

Qualities vs. Features

- **Features**: "parasitic" physical entities.
- relevant parts of their host...
 - ... or places
- Features have qualities, qualities have no features.

Abstract vs. Concrete Entities

- Concrete:
 - located (at least) in time
- Abstract two meanings:
 - Result of an abstraction process (something common to multiple exemplifications)
 - Not located in space-time (no inherent spatial or temporal location)
- Examples: *propositions*, *sets*, *symbols*, *regions*, etc.
 - **Quality regions** and **quality spaces** are abstract entities
 - Mereological sums (of concrete entities) are concrete, the corresponding sets are abstract...

Physical vs. Non-physical Endurants

- Physical endurants
 - Inherent spatial localization
 - Not necessarily dependent on other objects

- Non-physical endurants
 - No inherent spatial localization
 - Dependent on agents
 - mental (depending on singular agents)
 - social (depending on communities of agents)
 - Agentive: a company, an institution
 - Non-agentive: a law, the Divine Comedy, a linguistic system...
 - Descriptions, an extension of DOLCE

FIAT Co.

Formalizing DOLCE

Basic Relations

- Parthood
 - Between quality regions (immediate)
 - Between arbitrary objects (temporary)
- Dependence
 - Specific/generic constant dependence
- Constitution
- Inherence (between a quality and its host)
- Quale
 - Between a quality and its region (immediate, for unchanging entities)
 - Between a quality and its region (temporary, for changing entities)
- Participation
- Representation

Axiomatizing basic relations

- Domain restrictions
- Ground axioms (mainly algebraic)
- Links to other relations
- Dependence on time

Domain restrictions on basic relations

Parthood: "x is part of y"		
$P(x, y) \to (AB(x) \lor PD(x)) \land (AB(y) \lor PD(y))$		
Temporary Parthood : " <i>x is part of y during t</i> "		
$P(x, y, t) \to (ED(x) \land ED(y) \land T(t))$		
Constitution: "x constitutes y during t"		
$K(x, y, t) \rightarrow ((ED(x) \lor PD(x)) \land (ED(y) \lor PD(y)) \land T(t))$		
Participation: "x participates in y during t"		
$PC(x, y, t) \to (ED(x) \lor PD(y) \land T(t))$		
Quality: "x is a quality of y"		
$qt(x, y) \to (Q(x) \land (Q(y) \lor ED(y) \lor PD(y)))$		
Quale: "x is the quale of y (during t)"		
$ql(x, y) \rightarrow (TR(x) \land TQ(y))$		
$ql(x, y, t) \rightarrow ((PR(x) \lor AR(x)) \land (PQ(y) \lor AQ(y)) \land T(t))$		

Kinds of dependence

(D1) $SD(x, y) =_{df} o(\exists t(PR(x, t)) \land \forall t(PR(x, t) \rightarrow PR(y, t)))$ (Specific Const. Dep.) (D2) $SD(\phi, \psi) =_{df} DJ(\phi, \psi) \land o \forall x(\phi(x) \rightarrow \exists y(\psi(y) \land SD(x, y)))$ (Specific Const. Dep.) (D3) $GD(\phi, \psi) =_{df} DJ(\phi, \psi) \land o(\forall x(\phi(x) \rightarrow \exists t(PR(x, t)) \land$ $\forall x, t((\phi(x) \land \mathsf{At}(t) \land \mathsf{PR}(x, t)) \rightarrow \exists y(\psi(y) \land \mathsf{PR}(y, t))))$ (Generic Const. Dep.) (D4) $D(\phi, \psi) =_{df} SD(\phi, \psi) \vee GD(\phi, \psi)$) (*Constant Dependence*) (D5) $OD(\phi, \psi) =_{df} D(\phi, \psi) \land \neg D(\psi, \phi)$ (One-sided Constant Dependence) (D6) $OSD(\phi, \psi) =_{df} SD(\phi, \psi) \land \neg D(\psi, \phi)$ (One-sided Specific Constant Dependence) (D7) OGD(ϕ, ψ) =_{df}GD(ϕ, ψ) $\land \neg D(\psi, \phi)$ (One-sided Generic Constant Dependence) (Mutual Specific Constant Dependence) (D8) $MSD(\phi, \psi) =_{df} SD(\phi, \psi) \land SD(\psi, \phi)$ (D9) MGD(ϕ, ψ) =_{df}GD(ϕ, ψ) \land GD(ψ, ϕ) (Mutual Generic Constant Dependence)

Quality relations

Primitive relations and basic categories

OntoLog Telecon, Feb 2, 2006

www.loa-cnr.it

Dependence relations

OntoLog Telecon, Feb 2, 2006

Participation relations

- Hold between a perdurant and its involved endurants
- Extremely relevant for domain modelling
- Current axiomatization covers:
 - constant vs. temporary
 - complete vs. partial
- Further distinctions are currently primitive (thematic roles)
 - Agent, Theme, Substrate, Instrument, Product
 - More is needed on event structure, intentionality, and artifacts to produce analytic definitions

DOLCE Extensions and Applications

DOLCE Extensions

(mainly by Aldo Gangemi @LOA-RM)

- Allen-based ontology of time for events
- Ontology of common-sense locations
- Descriptions and Situations (D&S) ontology (reified relations and relationships)
- Ontology of Functional Participation (cf. *thematic roles*)
- Ontology of Plans and Tasks (DDPO) (Metokis project)
- Ontology of Information Objects (DDIO (Metokis project)
- Ontology of Knowledge Content Objects (KCO), from Metokis, for multimedia description and negotiation
- Ontology of Services, based on DDPO (with UKA, VUA)
- Ontology of Semantic Middleware (by Daniel Oberle at UKA)
- Core Legal Ontology (CLO, with ITTIG-CNR)
- Metaontology of ontology as semiotic object (O2)
- Ontology of ontology evaluation and quality (oQual)
- Ontology of design patterns
- Ontology of social entities and organizations (MOSTRO project @LOA-TN)

Mapping with lexicons: the OntoWordNet project

(Aldo Gangemi, Alessandro Oltramari, Massimiliano Ciaramita)

- 809 synsets from WordNet1.6 directly subsumed by a DOLCE+ class
 - Whole WordNet linked to DOLCE+
 - Lower WordNet levels still need revision
- Glosses being transformed into DOLCE+ axioms
 - Machine learning applied jointly with foundational ontology
- WordNet "domains" being used to create a modular, general purpose domain ontology
- Ongoing work on ontological analysis of specific WordNet domains (cognition, emotion, psychological feature)
- Ongoing cooperation with Princeton University.

The OntoWordNet methodology

- 1. **Populate** a general ontology (DOLCE) by adding single synsets (or whole taxonomy branches) from a c. lexicon (upon suitable classification)
- 2. **Restructure** a c. lexicon by checking ontological constraints (e.g. *OntoClean* meta-properties) throughout the branches
- **3.** Merge an ontology and a c. lexicon (includes 1. and 2.)
- 4. Enrich the resulting structure by extracting relationships from the glosses.

A Selection of Most Relevant Projects (2003-2006)

- WonderWeb (FP5): Ontology Infrastructure for the Semantic Web (LOA: foundational ontologies for the Semantic Web)
- **OntoWeb** (FP5 NoE): Ontology-based information exchange for knowledge management and electronic commerce (LOA: *SIG on Content Standards*)
- **METOKIS** (FP6): Methodologies and tools infrastructure for the development of multimedia knowledge units
- **SEMANTIC MINING** (FP6 NoE): Semantic Interoperability and Data Mining in Biomedicine
- **TICCA** (PAT&CNR): Tecnologie cognitive per l'interazione e la cooperazione con agenti artificiali (LOA: ontology of social interaction)
- **MOSTRO** (PAT); Modelling Security and Trust Relationships in Organizations
- **IKF** : Intelligent Knowledge Fusion (Eureka Project)
 - Ontology of banking transactions (with ELSAG Banklab_)
 - Ontology of Service-Level Agreement and IS monitoring (with SELESTA_)
 - Ontology of Insurance Services (with Nomos SpA)
- **FOS** (UN/FAO): Alignment of legacy fishery ontologies
- **NEON** (FP6) Networked Ontologies
- **ONTOGEO** (FP6) Geo-spatial Semantic Web

Conclusion

- Subtle meaning distinctions do matter
- Formal ontological analysis provides a rigorous methodology to obtain robust and coherent theories
- A humble interdisciplinary approach is essential

...Is this hard?

Of course yes!

(Why should it be easy??)

www.loa-cnr.it

A new journal: Applied Ontology

Editors in chief:

Nicola Guarino ISTC-CNR

Mark Musen Stanford University

IOS Press

Amsterdam, Berlin, Washington, Tokyo, Beijing

www.applied-ontology-org

FOIS-2006

International Conference on Formal Ontology in Information Systems

http://www.formalontology.org/

November 9-11, 2006 Baltimore, Maryland (USA)

OntoLog Telecon, Feb 2, 2006

www.loa-cnr.it

Extra slides

A missing extension: unity and plurality

Unity

• A tentative formulation: x is a whole under ω iff ω is an equivalence relation that binds together all the parts of x, such that

$$\mathsf{P}(y,x) \to (\mathsf{P}(z,x) \Leftrightarrow \omega(y,z))$$

but not

$$\omega(y,z) \Leftrightarrow \exists x(\mathsf{P}(y,x) \land \mathsf{P}(z,x))$$

- P is the *part-of* relation
- ω can be seen as a *generalized indirect connection*

Kinds of Wholes

- Depending on the nature of ω , we can distinguish:
 - Topological wholes (a piece of coal, a lump of coal)
 - *Morphological wholes* (a constellation)
 - *Functional wholes* (a hammer, a bikini)
 - Social wholes (a population)
- * a whole can have parts that are *themselves wholes* (with a different ω)

Parts vs. components

- A part x of y is a *component* of y iff it is a whole
- We can have topological components, morphological components, functional components....
- Members of collections are special kinds of components

Unity and Plurality

- Ordinary objects: wholes or sums of wholes
 - Singular: **no wholes as proper parts**
 - Plural: sums of wholes
 - *Plural wholes* (the sum is *also a whole*)
 - *Collections* (the sum is not a whole)
- "Fiat" objects: everything else
- Role of *topological wholes* in perception

Further issues about qualities

- Do qualities endure or perdure?
- What about qualities of events?
- Do qualities have parts?
 - Homogenous parts?
 - Heterogeneous parts?
- Do qualities have locations (i.e, other qualities)?
- What does it mean to measure a quality?

DOLCE vs. other axiomatic top-level ontologies

- SUMO
- CYC
- BFO
- GOL
- OCHRE
- Domain-oriented logical theories of space, time, law...
- CIDOC-CRM
- See UoBremen paper

Extensions of DOLCE Plans and task models

- Using D&S, some other extensions are being developed
- A preliminary plan ontology has been defined by starting from the harmonizing of existing clinical guidelines standards
- Basic distinction between plans as contexts (*methods*), and plan execution as configuration
- Typical attributes of plans are different from those of an execution (e.g. "approved" vs. "started")
- A plan is composed by *tasks*, *roles*, and *parameters*
- Tasks *sequence* actions or processes
 - Succession relations applicable that mirrors temporal relations
 - Task≠Action (cf. "alternative" vs. "running")
 - Distinction btw action tasks and rational tasks (branching, joining)
- Roles are *played by* objects or substances
- Parameters *select* regions within quality spaces
- Plan representation is also addressed by using an ontology of communication

