

Knowledge Representation in Practice: Project Halo and the Semantic Web

Mark Greaves Vulcan, Inc. markg@vulcan.com (206) 342-2276

Talk Outline

The Halo Vision

Systems AI – Vulcan's Halo Program

- The Halo Pilot: The Limits of Expert Systems
- Halo Phase II: Deep Reasoning over the AP problem
- Halo Today: Leveraging the Web

The Future of Halo

Talk Outline

📥 🛯 The Halo Vision

Systems AI – Vulcan's Halo Program

- The Halo Pilot: The Limits of Expert Systems
- Halo Phase II: Deep Reasoning over the AP problem
- Halo Today: Leveraging the Web

The Future of Halo

KR&R Systems, Scaling, and the Google Property

We seek KR&R systems that have the "Google Property:" they get (much) better as they get bigger

- Google's PageRank[™] yields better relevance judgments when it indexes more pages
- Current KR&R systems have the antithesis of this property

So what are the components of a scalable KR&R system?

- Distributed, robust, reliable infrastructure
- Multiple linked ontologies and points of view
 - Single ontologies are feasible only at the program/agency level
- Mixture of deep and shallow knowledge repositories
- Simulations and procedural knowledge components
 - "Knowing how" and "knowing that"
- Embrace uncertainty, defaults, and nonmonotonicity in all components
- Uncertainty in the KB you don't know what you know, things go away, contradiction is rampant, resource-aware computing is necessary, surveying the KB is not possible

Scalable KR&R Systems should look just like the Web!!

(coupled with great question-answering technology)

Envisioning the Digital Aristotle for Scientific Knowledge

- Inspired by Dickson's Final Encyclopedia, the HAL-9000, and the broad SF vision of computing
 - The "Big AI" Vision of computers that work with people
- The volume of scientific knowledge has outpaced our ability to manage it
 - This volume is too great for researchers in a given domain to keep abreast of all the developments
 - Research results may have cross-domain implications that are not apparent due to terminology and knowledge volume
- "Shallow" information retrieval and keyword indexing systems are not well suited to scientific knowledge management because they cannot reason about the subject matter
 - Example: "What are the reaction products if metallic copper is heated strongly with concentrated sulfuric acid?" (Answer: Cu²⁺, SO₂(g), and H₂O)
- Response to a query should supply the answer (possibly coupled with conceptual navigation) rather than simply list 1000s of possibly relevant documents

How do we get to the Digital Aristotle?

What we want:

- Technology to enable a global, widely-authored, very large knowledge base (VLKB) about human affairs and science,
- Technology that answers questions and proactively supplies information,
- Technology that uses powerful reasoning about rules and processes, and
- Technology that can be customized in its content and actions for individual organizations or people

How do we get to the Digital Aristotle?

What we want:

- Technology to enable a global, widely-authored, very large knowledge base (VLKB) about human affairs and science,
- Technology that answers questions and proactively supplies information,
- Technology that uses powerful reasoning about rules and processes, and
- Technology that can be customized in its content and actions for individual organizations or people

Vulcan's Goals

7

- Address the problem of scale in Knowledge Bases
 - Scaling by web-style participation
 - Incorporate large numbers of people in KB construction and maintenance
- Have high impact
 - Show that the Digital Aristotle is possible
 - Change our experience of the Web
 - Have quantifiable, explainable metrics
- Be a **commercializable** approach
- Project Halo is a concrete research program that addresses these goals

Talk Outline

The Halo Vision

Systems AI – Vulcan's Halo Program

- The Halo Pilot: The Limits of Expert Systems
- Halo Phase II: Deep Reasoning over the AP problem
- Halo Today: Leveraging the Web

The Future of Halo

The Project Halo Pilot (2004)

- In 2004, Vulcan funded a six-month effort to determine the stateof-the-art in fielded "deep reasoning" systems
 - Can these systems support reasoning in scientific domains?
 - Can they answer novel questions?
 - Can they produce domain appropriate answer justifications?

Three teams were selected, and used their available technology

- SRI, with Boeing Phantom Works and UT-Austin
- Cycorp
- Ontoprise GmbH

No NLP in the Pilot

The Halo Pilot Domain

- 70 pages from the AP-chemistry syllabus (Stoichiometry, Reactions in aqueous solutions, Acid-Base equilibria)
 - Small and self contained enough to be do-able in a short period of time, but large enough to create many novel questions
 - Complex "deep" combinations of rules
 - Standardize exam with well understood scores (AP1-AP5)
 - Chemistry is an exact science, more "monotonic"
 - No undo reliance on graphics (e.g., free-body diagrams)
 - Availability of experts for exam generation and grading
- Example: Balance the following reactions, and indicate whether they are examples of combustion, decomposition, or combination
 - $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$
 - $KCIO_3 \rightarrow KCI + O_2$
 - $CH_3CH_2OH + O_2 \rightarrow CO_2 + H_2O$
 - $P_4 + O_2 \rightarrow P_2O_5$
 - $N_2O_5 + H_2O \rightarrow HNO_3$

Halo Pilot Evaluation Process

Evaluation

- Teams were given 4 months to formulate the knowledge in 70 pages from the AP Chemistry syllabus
- Systems were sequestered and run by Vulcan against 100 novel AP-style questions (hand coded queries)
- Exams were graded by chemistry professors using AP methodology

Metrics

- **Coverage:** The ability of the system to answer novel questions from the syllabus
 - What percentage of the questions was the system capable of answering?
- Justification: The ability to provide concise, domain appropriate explanations
 - What percentage of the answer justifications were acceptable to domain evaluators?
- Query encoding: The ability to faithfully represent queries
- Brittleness: What were the major causes of failure? How can these be remedied?

Halo Pilot Results

Cyc had issues with answer

justification and question focus

Best scoring system achieved roughly an AP3 (on our very restricted syllabus)

Full Details in *AI Magazine* 25:4, "Project Halo: Towards a Digital Aristotle" ...and at www.projecthalo.com

Talk Outline

The Halo Vision

Systems AI – Vulcan's Halo Program

- The Halo Pilot: The Limits of Expert Systems
- Halo Phase II: Deep Reasoning over the AP problem
- Halo Today: Leveraging the Web

The Future of Halo

From the Halo Pilot to the Halo Project

Halo Pilot Results

14

- Much better than expected results on a very tough evaluation
- Most failures attributed to modeling errors due to contractors' lack of domain knowledge
- Expensive: O(\$10,000) per page, per team
- Project Halo Goal: To determine whether tools can be built to facilitate robust knowledge formulation, query and evaluation by domain experts, with ever-decreasing reliance on knowledge engineers
 - Can SMEs build robust question-answering systems that demonstrate excellent coverage of a given syllabus, the ability to answer novel questions, and produce readable domain appropriate justifications using reasonable computational resources?
 - Will SMEs be capable of posing questions and complex problems to these systems?
 - Do these systems address key failure, scalability and cost issues encountered in the Pilot?
- Scope: Selected portions of the AP syllabi for chemistry, biology and physics
 - This allows us to expand the types of reasoning addressed by Halo
 - Two competing teams/approaches (F-Logic, Concept Maps/KM)
- Evaluation and downselect in September 2006

The Open University

Team SRI Halo 2 Intermediate Evaluation

 Science grad student KBs
 Extensive natural lang
 ~\$100 per syllabus page

ad	Domain	Number of	F	Percentag	e correct		
S	Domain	questions	SME1	SME2	Avg	KE	
3	Bio	146	52%	24%	38%	51%	
ge	Chem	86	42%	33%	37.5%	40%	
J	Phy	131	16%	22%	19%	21%	

Knowledge Formulation

Time for KF

- Concept: ~20 mins for all SMEs
- Equation: ~70 s (Chem) to ~120 sec (Physics)
- Table: ~10 mins (Chem)
- Reaction: ~3.5 mins (Chem)
- Constraint: 14s Bio; 88s (Chem)

SME need for help

 - 68 requests over 480 person hours (33%/55%/12%) = 1/day

Question Formulation

- Avg time for SME to formulate a question
 - -2.5 min (Bio)
 - -4 min (Chem)
 - -6 min (Physics)
 - Avg 6 reformulation attempts

Usability

- SMEs requested no significant help
- Pipelined errors dominated failure analysis

System Responsiveness

- Biology: 90% answer < 10 sec
- Chem: 60% answer < 10 sec
- Physics: 45% answer < 10 sec

	Interpretation (Median/Max)	Answer (Median/Max)
Bio	3s / 601s	1s / 569s
Chem	7s / 493s	7s / 485s
Phy	34s / 429s	14s / 252s

No other system has EVER achieved this performance level with SME-entered knowledge

Talk Outline

The Halo Vision

Systems AI – Vulcan's Halo Program

- The Halo Pilot: The Limits of Expert Systems
- Halo Phase II: Deep Reasoning over the AP problem
- Halo Today: Leveraging the Web

The Future of Halo

The Halo Project Today

- SME Knowledge Entry and Question Answering Technology (Aura)
- Scaling up the KB (Offshore knowledge entry)
- SME entry and use of defaults and rule knowledge
- Scaling up Participation (Semantic Wikis)

Aura Goals for the September 2008 Evaluation

- Demonstrate a 75% score for correctness and explanation on the intermediate evaluation questions, using SME authored KBs
 - Current scores range from 16% to 52%
- Median number of SME question reformulation attempts will be 5 or less (end-to-end)
 - Current numbers are 5 (Chem); 7 (Physics); and 1 (Bio, constrained by limited possible question types)

Performance

- Complete 75% of the knowledge formulation operations in 5 sec or less
- For 75% of the final evaluation questions, the mean response time for interpreting a question and answering a question will be less than 10 sec.
- For 90% of the questions, the mean system response time for answering the question will be less than 1 minute

Scaling Up to the Digital Aristotle

Contracted KB construction

- Aura tested at IJCAI with IIIT-Hyderabad students
- Investigating linkup with offshore institutions
 - Does the lower cost of student labor offset higher management costs?
 - Traditional consulting firms are too
 expensive
 - Looking for Indian bioinformatics firms
- Next steps
 - Gather bids and select a performer
 - Pilot with the implementation phase syllabus (~160 hours); compare to reference and US results

Other options

- US-based student labor
- Game-based knowledge acquisition

Goal: Pilot study ready to go by the time Aura is ready

Halo and Rules Knowledge (New 2008 Thrust)

SILK: Suite of core knowledge representation and reasoning (KR) modules

- Provide defaults, hypotheticals, actions, and processes capabilities
 - First Focus: Combine defaults with as much as possible of other established features for monotonic (DB, classical, ontology). Default flavor pervades the KR
 - Key ideas: Courteous extension of Logic Programs, distributed, event-driven
 - Second Focus: Hypotheticals/Actions/Processes. Key ideas: advanced defaults and rules
- Employ distributed algorithms and platform for high scalability
 - Focus: Incremental update/merge, with distributed dynamic import
 - Key ideas: dependency analysis, precomputation
- Progressively/iteratively extend with new expressive features and algorithms
- Early iterates, e.g., initial defaults, have substantial value for science and business/govt.
- Interoperate via KR and SOA standards with other systems/sources, including web sources
- Knowledge acquisition (KA) and UI modules, building on SILK KR
 - Provide assert, query, answer, browse, edit, test, explain, analyze, debug capabilities

Integration of the above

- Into Aura, to significantly boost AP performance
- Into Semantic MediaWiki (SMW) or other wiki/Web2.0 environment, for knowledge acquisition

As a stand-alone KR technology

Rethinking Halo in the Age of the Web

- Halo 2's knowledge acquisition design is classic Al
 - Halo systems (SRI, Ontoprise) are logically self-contained
 - Knowledge acquisition use cases are single-author expert systems

But, Vulcan's goal is the Digital Aristotle

- Large knowledge bases in support of human inquiry
 - Scale beyond single authors to Web scale
- Social issues surrounding real KR&R systems
 - Disciplinary approval of KB
 - Non-formal annotations of KB material (historical material, examples, different pedagogical approaches)
 - Transparency of motivation for KB modeling choices

So, we have made programmatic changes in Halo

- Expand knowledge acquisition approach
 - RDF/OWL import and export (for DL-expressible fragments)
 - Use Semantic Wikis (specifically, AIFB's Semantic MediaWiki)
 - Basic support for collaboration
- Leverage European research vigor

21

Semantic Wikis – The Main Idea

- Wikis are tools for Publication and Consensus
- MediaWiki (software for Wikipedia, Wikimedia, Wikinews, Wikibooks, etc.)
 - Most successful Wiki software
 - High performance: 10K pages/sec served, scalability demonstrated
 - LAMP web server architecture, GPL license
 - Publication: simple distributed authoring model
 - Wikipedia: >2M articles, >180M edits, 750K media files, #8 most popular web site in October
 - Consensus achieved by global editing and rollback
 - Fixpoint hypothesis (2:1 discussion/content ratio), consensus is not static
 - Gardener/admin role for contentious cases

Semantic Wikis apply the wiki idea to basic (typically RDFS) structured information

- Authoring includes instances, data types, vocabularies, classes
- Natural language text for explanations
- Automatic list generation from structured data, basic analytics
- Searching replaces category proliferation
- Reuse of wiki knowledge

Semantic Wiki Hypotheses:

(1) Significant interesting non-RDBMS Semantic Data can be collected cheaply2) Wiki mechanisms can be used to maintain consensus on vocabularies and classes

Semantic MediaWiki

Editing Hydrogen	🗄 Links to Oth	ier Pa
WARNING: This page is 42 kilobytes long; some browsers may have problems editing pages	😑 Tools	
approaching or longer than 32kb. Please consider breaking the page into smaller sections.	Categories	
B 🖊 Ab St A 🖃 N 🐙 🐼 🚛 🚽 🕾 🛷 🧳 📿 🐵	Annotate Create	
AU AN CHILLY ON THE AND AN	Nonmetal	
gen economy)} used as [[Is used as:=an ingredient in some rocket fuels]] for severa	Descention	
cogen, or more specifically H ₂ , is now widely discussed in	Properties	Transition
of energy. Hydrogen is not an energy ''source'', since it is not an	Annotate Create	Has pa
ural resource and more energy is used to produce it than can be	Can be produced	hydro
stracted from it. However, it could become useful as a ''carrier'' of	by	1
lucidated in the [[United States Department of Energy]]'s 2003 report arious alternative energy strategies, building an energy infrastructu	Was discovered b	Parac
drogen - the third most abundant element on the earth's surface - as	У	1
''carrier'' that connects a host of energy sources to diverse end use secure and clean energy future for the Nation." <ref> "Basic Research</ref>	was first synthe	Parac
Hydrogen Economy Report on the Basic Energy Sciences Workshop On	sized by	8
duction, Storage, and Use", May 13-15, 2003.	Can be produced	seve
c.doe.gov/bes/reports/files/NHE_rpt.pdf The hydrogen would ther	by	organ
onverted into usable energy either via combustion of [[fossil fuels]]		ally vi
ochemical conversion into electricity in a [[fuel cell]].	Is used as	an inc
cal advantage of using H ₂ as a carrier is the localization		some
ation of environmentally unwelcome aspects of hydrogen manufacture. F		ls.
sub>2 [[CO2 sequestration sequestration]] could be conducted at	•	N.
H ₂ production from [[methane]]. Hydrogen could also be		
ng the [[electrolysis of water]] method; however, this is currently	Ontology B	
	Mark a word	
Position: Ln 263, Ch 1 Total: Ln 263, Ch 43337	G @ Help	

arbon

elsus

leus

ral [[micro

sm]]s, usu

redient in

ocket fue

2

Forschungszentrum für Künstliche Intelligenz GmbH

Knowledge Authoring Capabilities (SMW 1.0 plus Halo Extension)

- Syntax highlighting when editing a page
- Semantic toolbar in edit mode
 - Displays annotations present on the page that is edited
 - Allows changing annotation values without locating the annotation in the wiki text
- Autocompletion for all instances, properties, categories and templates
- Increased expressivity through n-ary relations (available with the SMW 1.0 release)

Semantic MediaWiki

Conservation and the	and the second sec
Onto	Dawprowoor
Unito	logyBrowser

special

The ontology browser lets you navigate through the ontology to easily find and identify items in the wiki. Use the Filter Mechanism at the upper left to search for specific entities in the ontology and the filters below each column to narrow down the given results. Initially the flow of browsing is left to right. You can flip the flow by clicking the big arrows between the columns.

Press Ctrl+Alt+Space to use auto-completion. (Ctrl+Space in IE)

Category Treel (2) Property Tree Chemical element symbol templates Halo2Biology Q Substance Q Chemical substance Q	Q.	 Instand Disodium Hydrogen Hydrogen 	hydrogen phosphate	Q	OAttributes/@Relations OAppearance Q colorless	Value
■ Halo2Biology Q ■ L_Substance Q	Q.	Hydrogen	a server a server a server a server a	0		
😑 🗆 Substance 🔾				0		
		Hydrogen		~	Atomic number Q 1	
😑 🛄 Chemical substance 🔍			bond	0	AHas CAS number Q 1333-74-0	
		Hydrogen	bromide	Q	All Has atomic radius 1E-011 m[25]]	
😑 💷 Chemical elements 🔍		Hydrogen	chloride	Q	Q	
🗃 🦾 Nonmetal 🔍		Hydrogen	cyanide	Q	AHas boiling point Q 20.28 K	
😑 Halo2Chem 🔍		Hydrogen	fluoride	Q	(AHas covalent radiu 1E-011 m[37]]	
😑 –Chemical elements 🔍		Hydrogen	halide	Q	Q	
🗃 🛄 Nonmetal 🔍		Hydrogen	iodide	0°0°0°0	AHas crystal struct hexagonal	
😑 🗆 Substance 🔍		Hydrogen	ion	Q	Q	
😑 📖 Chemical substance 🔍		Hydrogen			Has electron confi 1s1	******
😑 🗆 Chemical elements 🔍		Hydrogen	Contraction of the second s	Q	Q	
🝙 🗆 Nonmetal 🔍		Hydrogen	carbonates	Q	AHas electronegativ 2.2	
Halo2Chemistry Q					Q	
Templates using ParserFunctions Q					()Has heat capacitiy 2)	
					28.836	
					AHAS heat of fusion (H ₂) 0.117	
					0	
					Has heat of vapori 2) 0.904	
	1.10				Q	
					Has melting point Q 14.01 K	
•	*	1			A Has molecular mass 1.00794	
Filter	ar	Filter	E	ilter	Filter	

Semantic Navigation Capabilities (SMW 1.0 plus Halo Extension)

- GUI-based ontology browser, enables browsing of the wiki's taxonomy and lookup of instance and property information
- Linklist in edit mode, enables quick access of pages that are within the context of the page being currently edited
- Search input field with autocompletion, to prevent typing errors and give a fast overview of relevant content

Semantic MediaWiki

	Query Tree	🕒 Add Category	Add Instance 🛛 🌙 Add Property		
	Main			WHolp .	
VULCAN	 Main 			How do I pose a guery? White happens if I ask for an instance? (more) Ask your own question	
PROJECT		- Table Column Prev	iew		Contoprise
		Article title Number of	inhabitants Capital of		Concoprise
IIALO	- Query Layout Manager				know how to use Know-how
	Format: table v	Sort by: Limit:	Number of inhabitants 🔽 50 City	Order: ascending 💌 Headers: show 🗹	Deutsches Forschungszentrum für Künstliche

Knowledge Retrieval Capabilities (SMW 1.0 plus Halo Extension)

- Combined text-based and semantic search
- Basic reasoning in ask queries with sub-/super-category/-property reasoning and resolution of redirects (equality reasoning)
- GUI-based query formulation interface for intuitive assembly and output generation of ASK queries (no SQL/MQL/SPARQL)
- Fully open source under GPL
- Extensive formal user testing
- Download at: http://semanticweb.org/wiki/Halo_Extension

Cool Stuff... But Does it Work?

User tests were performed in Chemistry

- 20 graduate students were each paid for 20 hours (over 1 month) to collaborate on semantic annotation for chemistry
- ~700 Wikipedia base articles
- US high-school AP exams were provided as content guidance

Initial Results

- Sparse: 1164 pages (entites), avg 5 assertions per entity
 - 226 Relations (1123 relation-statements) and 281 attributes (4721 attribute-statements)
- Many bizarre attributes and relations
- Very difficult to use with a reasoner

User testing and quality results for Phase II extensions

- Initial SUS scoring (6 SMEs, AP science task) went from 43 to 61; final scores in the 70s
- 3 sessions using the Intrinsic Motivation Inventory (interest/value/usefulness); up 14%
- Aided by the consistency bot, users corrected 2072 errors (80% of those found) over 3 months

Semantic Wikis for the Education Community

- "Everyman's Database" blends text and data in a collaborative wiki environment
- Scalable sharing tools with simple data analytics
- Semantic wikis can redisplay data from other databases, and export data to other tools

Gardening Statistics for Test Wiki

Vulcan Project Halo Architecture

- Leverages Semantic Web for general knowledge
 Overlapping KRs and meta-level problem solving architectures
- Adds SILK for explicit rule formulation and reasoning

KB = Knowledge Base KE = Knowledge Engineer SME = Subject Matter Expert KF = Knowledge Formulation QF = Question Formulation AP = Advanced Placement PS = Problem Solving

Summary: Areas for Halo in 2008

Core Halo Thrust

Complete Phase II Aura and SMW

- 75% correctness with a 10 sec mean question answering time
- Mean 5 user question reformulation attempts
- Aggregate 30% reusable knowledge from SMW

Perform Halo Phase II Evaluation

- SME-driven KB construction
- SMEs will pose AP-level questions
- AP-level grading
- SMW evaluation and wiki import
- Phase III specific metric goals
- Kickoff Halo Phase III Development
- Semantic Web Outreach
 - Large Knowledge Collider (LarKC)
 - Networked Ontologies (NeOn)

Halo Advanced Research Thrust

Rule Engine Basic R&D

- More expressive/reasoning power
 - Focus on defaults, general rules, and formal processes
 - Hyper Logic Programs, Nonmonotonic, KR formalization of Aura
- More commonsense knowledge (ReCyc)
 - Cyc knowledge used in SILK validation
 - If IP available, use of Cycorp reasoning modules
 - Cyc KB translation and import (goal 50%)

Rule Authoring R&D

- KA/UI prototypes for authoring SILK defaults in Halo
- Simple Rules in SMW

Initial SILK Prototype

- Integration with Aura and SMW
- Test with AP subject domains

Talk Outline

The Halo Vision

Systems AI – Vulcan's Halo Program

- The Halo Pilot: The Limits of Expert Systems
- Halo Phase II: Deep Reasoning over the AP problem
- Halo Today: Leveraging the Web

Core Halo: Building Outward

Build a more complete Halo

- Halo R&D targets the challenging problem of AI scale by SMEbased authoring and deep question-answering technologies
 - We have had world-class success with our current approach
 - For a complete system, we need to combine Halo's unique technologies with other techniques (search, database-style query, approximate answers, etc.) that address technically easier problems

Build a Halo user community

- Halo Extensions for Semantic MediaWiki look like a solid success
 - Leverage open source community for software improvements and extensions
- Tighter links to Semweb/Web 2.0 community
 - Sources of data, rules, commonsense knowledge
 - Sources of Knowledge for the Final Encyclopedia

A Knowledge Source for Halo: The DBpedia Project

Mine Wikipedia for assertions

- Scrape Wikipedia Factboxes
 - ~23M triples
- High-confidence shallow English parsing
- Category assertions

DBpedia 3.0 dataset

- ~2M things, ~220M triples
 - 80K persons, 293K places, 62K music albums, 36K films, 489K links to images, 2.7M links to relevant external web pages, 2.1M links into RDF datasets
- Classifications via Wikipedia categories and WordNet synsets
- One of the largest broad knowledge bases in the world

Simple queries over extracted data

- Public SPARQL endpoint
- "Sitcoms set in NYC"
- "Soccer players from team with stadium with >40000 seats, who were born in a country with more than 10M inhabitants"

		Inn	sbruck
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	{{Infobox Town AT name = Innsbruck image_coa = InnsbruckWappen.png image_map = Karte-tirol-I.png state = [[Tyrol]] regbzk = [[Statutory city]]		AN
7	population = 117,342	Country	Austria
8 9	population_as_of = 2006 pop_dens = 1,119	State	Tyrol
10	area = 104.91		
11	elevation = 574	Administrative region	
12	lat_deg = 47	Population	(2008) 117,342
13	lat_min = 16	Area	104.91 km²
14	$lat_hem = N$	Population density	1,119 /km²
15	lon_deg = 11	Elevation	574 m
16 17	lon_min = 23 lon hem = E		
18	postal_code = 6010-6080	Coordinates	47°16' N 11°23' E 🗗
19	area_code = 0512	Postal code	6010-6080
20	licence = I	Area code	0612
21	mayor = Hilde Zach	Licence plate code	1
22	website = [http://innsbruck.at]	Mayor	Hilde Zach
23	}}	ivia y ur	HIDE Zach

Linking Open Data

 W3C Project primarily carried out in Europe

Goals

- Create a single, simple access mechanism for web RDF data
- Build a data commons by making open data sources available on the Web as RDF
- Set RDF links between data items from different data sources

Total LOD dataset

- ~2B triples, and ~3B RDF links
- Growing all the time (ex: 3B Eurostat triples)
- Database linkage means that LOD will soon be impossible to count except via order of magnitude

Networked Ontology Project (NeOn)

Ever try to use 3-4 networked ontologies?

- Location and characterization of ontology resources
- Version control under multiple revisions
- SOA and mapping management
- Lifecycle issues

NeOn is an EC Framework 6 Program (2006-2009)

- ~€15M, 14 partners including UN FAO, pharmaceutical distribution
- Goals:
 - To create the first ever service-oriented, open infrastructure, and associated methodology
 - To support the overall development life-cycle of a new generation of large scale, complex, semantic applications
 - To handle multiple networked ontologies in a particular context, which are highly dynamic and constantly evolving.

Outputs: The open source (GPL) NeOn toolkit: http://www.neon-toolkit.org/

Final Thoughts on Halo

- Halo is one of the largest "classic AI" R&D programs in the US
 - We bring together graduate students, research labs, and universities into an unified, ambitious project
 - Halo is known worldwide
- Part of an increasingly-integrated strategy at Vulcan to invest in semantics and advanced knowledge tools
 - Other investments: Radar Networks, ZoomInfo, Evri, Kiha, etc...
 - More in the pipeline

Semantic MediaWiki is a near-term spinout

Thank You

