
Aldo Gangemi
Valentina Presutti

Semantic Technology Lab
ISTC-CNR, Roma

aldo.gangemi@cnr.it
valentina.presutti@istc.cnr.it

Pattern-based ontology design

1

1

mailto:aldo.gangemi@cnr.it
mailto:aldo.gangemi@cnr.it
mailto:aldo.gangemi@cnr.it
mailto:aldo.gangemi@cnr.it
mailto:aldo.gangemi@cnr.it
mailto:aldo.gangemi@cnr.it

• Designing Computational Ontologies

• Ontology Design Patterns

• ontologydesignpatterns.org initiative

Outline

2

2

• Ontologies as (software) components, expressed and managed in
standard W3C languages like RDF, OWL, RIF, SPARQL, Fresnel,
etc.

• Ontology design is the core aspect

• Quality is associated with good design

• STLab people research from 2004-5: “A formal framework for
ontology evaluation and selection” [5]

Computational ontologies

3

3

• Three quality dimensions: Structural-Content-Sustainability

• Content is the primary dimension

• Content compliance spans Coverage-Task-SelfExplanation

• Task is the immediately measurable aspect

• Quality is not maximal and abstract, but bound to context

• Partial orders of problems and reusable solutions (locality)

• Good practices (history)

• Empirical methods for evaluation (measurability)

Quality

4

4

• Computational Ontologies are artifacts

• Have a structure (linguistic, logical, etc.)

• Their function is to “encode” a description of the world
(actual, possible, counterfactual, impossible, desired, etc.) for
some purpose

What is ontology design? 1/3

5

5

• Ontologies must match both domain and task

• Allow the description of the entities (“domain”) whose
attributes and relations are concerned because of some
purpose

• e.g. social events and agents as entities that are considered in
a legal case, research topics as entities that are dealt with by
a project, worked on by academic staff, and can be topic of
documents,etc.

• Serve a purpose (“task”), e.g. finding entities that are
considered in a same legal case, finding people that work on a
same topic, matching project topics to staff competencies,
time left, available funds, etc.

What is ontology design? 2/3

6

6

• Ontologies have a lifecycle

• They are created, evaluated, fixed, and exploited just like any
artifact

• Their lifecycle has some original characteristics regarding:

• Data, Project and Workflow types, Argumentation
structures, Design solutions (incl. patterns), Interaction

What is ontology design? 3/3

7

7

Collaborative Ontology Design Components

Ontology project
execution

Collaborative procedure

Argumentation sessionDesign action

Design solution

Ontology-related data

input

output

 Cicero

 Semantic Wikis

 odp-web

 evaluation and
selection tools

 reengineering

tools

pattern
support tools

 W3C OEP

Watson, Swoogle, Oyster, etc.

 NTK, TopBraid, etc

 Collaborative Protégé

 Biological ODPs on sourceforge

 odp-web

Linking Open Data

Design in the C-ODO key

8

8

• Informal vs. formal

• Text corpora

• Folksonomies (tag sets, directories, topic trees, subject indexes,
infoboxes)

• Lexica (dictionaries, wordnets, terminologies, nomenclatures)

• Knowledge organization systems (thesauri, classification schemes)

• Frames, semantic networks

• DB schemas

• Linked Open Data datasets

• (Computational) ontologies

Ontology-related data

9

9

• Mash-ups

• Linked open data

• Wikipedia, DBpedia, Freebase, etc.

• Triplify, GRDDL, RDFa, SKOS, SIOC, etc.

• Corpora, terminologies, lexica, thesauri, “KOS”, frames, ontologies

A lot of data in the web “suq”

10

10

• Transform all in RDF, or even OWL

• Cf. Triplify initiative

• Dataset extracted from heterogeneous sources, and triplified

• Relations are added in direct, naïve ways: Linked Open Data

• Semantics depends on intended task of data and relations used
for linking

• Then search/visualize RDF data, or make integrating applications

Standard languages help

11

11

12

12

Integrated knowledge search: DBpedia

13

13

Integrated knowledge search: Freebase

14

14

Now we have all those
data expressed in a
language that allows
semantic
interoperability ...

15

15

• ... (maybe) we can check the consistency, classify, and query all this knowledge

• this is great, but ...

• ... when I locally reuse parts of such a big bunch of knowledge, inferences
sometimes produce strange results:

• a web page same as an email address (e.g. http://.../Aldo owl:sameAs
mailto://aldo@...)

• a person same as a wikipedia article (e.g. Aldo owl:sameAs http://
en.wikipedia.org/Aldo)

• Italy is a continent (e.g. (Italy rdf:type (Country) rdfs:subClassOf
Continent))

• ...

• ... and problems are hardly fixable on a large scale

• Logical consistency is not the main problem

• e.g. owl:sameAs can be wrongly used and still we have consistency

• Why OWL is not enough?

What we can do with OWL

16

16

http://en.wikipedia.org/Aldo
http://en.wikipedia.org/Aldo
http://en.wikipedia.org/Aldo
http://en.wikipedia.org/Aldo

• OWL gives us logical language constructs, but does not give us
any guidelines on how to use them in order to solve our tasks.

• E.g. modeling something as an individual, a class, or an object
property can be quite arbitrary

When to use
owl:Individual, Class, ObjectProperty, DatatypeProperty?

17

17

• cf. Semantic Web Interest Group post May 27th, 2008 by Zille Huma:
"I have been wondering for sometime now that why isn't it a popular trend to store standard activities of a
domain in the ontology and not only the concepts, e.g., for the tourism domain, ontologies normally contain
concepts like Tourist, Resort, etc. but I have not so far come across an ontology that also contains the
standard activities like searchResort, bookHotel, etc. Why is it so? What support is provided in the ontology
langauges to model the standard activities of the domain as well?"

• (1) a functionality for searching resorts is implemented in our web service

• owl:Individual(searchResort) rdf:type(Functionality)

• (2) searching resorts is a type of functionality required for this kind of services

• owl:Class(searchResort) rdfs:subClassOf(Functionality)

• (3) who has been searching for what resorts in our web service?

• owl:ObjectProperty(searchResort) rdfs:range(Resort)

• (4) how many users have been using our resort searching functionality?

• owl:DatatypeProperty(searchResort) rdfs:range(xsd:boolean)

New problems arising on the Web...

18

18

• ... OWL is not enough for building a good ontology, and we
cannot ask all web users either to learn logic, or to study
ontology design

• Reusable solutions are described as Ontology Design Patterns,
which help reducing arbitrariness without asking for sophisticated
skills ...

• ... provided that tools are built for any user :)

Solutions?

19

• Requirements (e.g. “I want to attend my ideal talk”)

• Logical constructs (rdfs:subClassOf, owl:Restriction, ...)

• Existing ontologies (FOAF, BibTex, SWC, DOLCE, ...)

• Informal knowledge resources (CiteSeer, ACM topic catalog)

• Conventions and practices (e.g. naming, URI making, XML2OWL,
SKOS, disjoint covering, reification methods, transitive partOf,
role-task, ...)

• Tools: editors, reasoners, translators, etc. (Protégé, NeOn Toolkit,
TBC, FaCT++, Pellet, SMW, Jena, AllegroGraph, Virtuoso, ...)

An ontology designer’s world

20

20

• Obeys to “capital questions”:

• What are we talking about?

• Why do we want to talk about it?

• Where to find reusable knowledge?

• Do we have the resources to maintain it?

• Whats, whys and wheres constitute the Problem Space of an
ontology project

• Ontology designers need to find solutions from a Solution Space

• Matching problems to solutions is not trivial

A well-designed ontology ...

21

21

• Designing Computational Ontologies

• Ontology Design Patterns

• ontologydesignpatterns.org initiative

Outline

22

22

• An ontology design pattern is a successful reusable solution to a
recurrent modeling problem

Ontology Design Pattern

23

23

24

• Pattern-based ontology design is the activity of searching,
selecting, and composing different patterns

• Logical, Reasoning, Architectural, Naming, Correspondence,
Reengineering, Content

• Common framework to understand modeling choices (the
“solution space”) wrt task- and domain-oriented requirements
(the “problem space”)

• http://www.ontologydesignpatterns.org

Pattern-based design
aka eXtreme Design (XD)

25

25

http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org

Types of Ontology Design
Patterns (OPs)

26

‣ We also distinguish between ontological resources that are not OPs
and Ontology Design Anti-Patterns (AntiOP)

26

• Class names should not contain plurals, unless explicitly required by the
context

• Names like Areas is considered bad practice, if e.g. an instance of the
class Areas is a single area, not a collection of areas

• It is useful to include the name of the parent class as a suffix of the class
name

• e.g. MarineArea rdfs:subClassOf Area

• Class names conventionally start with a capital letter

• e.g. Area instead of area

Examples of Presentation OPs

27

27

• Precise

• Classification

• Subsumption

• Inheritance

• Materialization

• De-anonymizing

• ...

• Approximate

• Approximate classification

• Similarity induction

• Taxonomy induction

• Relevance detection

• Latent semantic indexing

• Automatic alignment

• ...

Examples of Reasoning OPs

28

or some workflow of them, cf. TBC

28

Example of Schema Reengineering
OP: kos2skosABox

29

29

• Also called “correspondence patterns” in [16]

• equivalent to, (not equivalent to)

• foaf:Agent ≡ wn16:Agent-3

• contained in, (not contained in)

• foaf:Person ⊑ geo:SpatialThing

• overlap with

• foaf:Person ⊓ dul:Person

• disjoint with

• (dul:PhysicalPerson ⊓ dul:SocialPerson) = ∅

• logically heterogeneous mapping

• dul:PhysicalPerson (owl:Class) ≈ p1:PhysicalPersonRole (owl:Individual)

• We also consider an additional semantic relation, cloned from

• ontology element oe1 in one ontology is the clone of an ontology element oe2
in another ontology

Example of Mapping OPs

30

30

• Logical macros provide a shortcut to model a recurrent intuitive
logical expression

Example:
the macro: ∇R.C [7]
colloquially means “every R must be a C”
formally: ∃R.⊤ ⨅ ∀R.C

in OWL:
the combination of an owl:allValuesFrom restriction with an
owl:someValuesFrom restriction.

Example of Logical Macro

31

31

Example of Transformation
pattern: N-ary relation (1/2)

32

32

But beware of identification constraints! [15]

Example of Transformation
pattern: N-ary relation (2/2)

33

33

Content Ontology Design
Patterns
Some theory

34

34

Reusable ontologies?

• How many cases of reusability?

• What kind of ontologies are mostly reusable?

• How many ontologies have been actually specialized in more than one
domain?

• How many studies in comparing the cost of reusing vs. developing from
scratch?

• How many studies in evaluating/facilitating reusability?

• Let’s face it: reusing, when applied, is an art, not a communicable/
manageable know-how

• Started with W3C SWBPD: OWL modelling best practices, semantic SE
patterns, techniques to vocabulary porting and migration to the SW

• Then in EU NeOn project: ontology design for networked and
contextualized ontologies: Watson, ODP Portal, Modularization plugin,
Pattern-based design plugin

35

• We envision small ontologies with explicit documentation of
design rationales, and best reengineering practices

• components supported by specific functionalities

• selection, matching, composition, etc.

• implemented in repositories, registries, catalogues, open
discussion and evaluation forums, and in new-generation
ontology design tools

• ontologydesignpattern.org

• ODP and Watson APIs

• NeOn ODP Plugin

• etc.

From the lessons learnt ...

36

36

• CPs encode conceptual, rather than logical design patterns.

• Logical OPs solve design problems independently of a
particular conceptualization

• CPs are patterns for solving design problems for the domain
classes and properties that populate an ontology, therefore
they address content problems

• CPs are instantiations of Logical OPs (or of compositions of
Logical OPs), featuring a non-empty signature

• Hence, they have an explicit non-logical vocabulary for a
specific domain of interest, i.e. they are content-dependent

Content OPs (CPs) 1/2

37

37

• CPs are instantiations of Logical OPs (or of compositions of
Logical OPs), featuring a non-empty signature

• Hence, they have an explicit non-logical vocabulary for a
specific domain of interest, i.e. they are content-dependent

• Modeling problems solved by CPs have two components: domain
and requirements.

• A same domain can have many requirements (e.g. different
scenarios in a clinical information context)

• A same requirement can be found in different domains (e.g.
different domains with a same “expert finding” scenario)

• A typical way of capturing requirements is by means of
competency questions [11]

Content OPs (CPs) 2/2

38

38

• A pattern is a theory template. It denotes a structure that is
invariant under signature transformation (morphism). Pattern
validity in an application is then left to a subjective decision.

• E.g. the axiom:

• [If a consumer is connected to a producer, then it is supplied]

• ∀c((consumer(c) ∧ ∃p(producer(p) ∧ connects(c,p))) →
supplied(c))

• via signature morphism becomes e.g. in an application:

• [If a light is connected to a battery, then it is powered]

• ∀c((light(c) ∧ ∃p(battery(p) ∧ connects(c,p))) → powered(c))

• But if a pattern is just an untyped structure, there are no ways to
distinguish a Logical OP vs. a CP

Peter Clark’s idea

39

39

• ∀c((consumer(c) ∧ ∃p(producer(p) ∧ connects(c,p))) → supplied(c))

• SubClassOf

• ((intersectionOf

• Consumer

• (restriction(connects someValuesFrom(Producer))))

• Supplied)

• ∀c((φ(c) ∧ ∃p(ψ(p) ∧ ρ(c,p))) → χ(c))

• SubClassOf

• ((intersectionOf

• owl:Class:φ
• (restriction(owl:ObjectProperty:ρ someValuesFrom(owl:Class:ψ))))

• owl:Class:χ)

• In OWL, this is a GCI (General Concept Inclusion) axiom. Not a typical LP

Logical OP:
no specific vocabulary

CP:
specific (non-logical)

vocabulary

CPs vs. Logical OPs

40

40

41

Formal characteristics of OWL CPs

• Mostly graphs of classes and properties, self-connected through axioms
(subClassOf, equivalentClass, domain, range, disjointFrom)

• ObjectProperty(component domain(System))

• Usually applied through downward subsumption of at least one element

• “being a part of something at some time”

• “being a component of a system at some time”

• “being a section in a law at some time”

• Or through composition

• “being a section in a law at some time” ⊗ “being expressed in a
legal text”

• Usually there is an underlying n-ary relation (sometimes polymorphic)

• component(s,e,t) → System(s) ∧ Entity(e) ∧ Time(t)

• ? component(s,e,t,...) → System(s) ∧ Entity(e) ∧ Time(t) ∧
Function(...) ...

42

Pragmatic characteristics of CPs
• Domain-dependent

• Expressed with a domain-specific (non-logical) vocabulary

• Requirement-covering

• Solve domain modelling problems (expressible as use-cases, tasks or
“competency questions”), at a typical maximum size (cf. blink)

• Reasoning-relevant components

• Allow some form of inference (minimal axiomatization, e.g. not an isolated
class)

• Cognitively-relevant components

• Catch relevant core notions of a domain and the related expertise -- blink
knowledge

• Linguistically-relevant components

• Are lexically grounded, e.g. they match linguistic frames, or at least a domain
terminology

• Examples:

• PartOf, Participation, Plan, Legal Norm, Legal Fact, Sales Order, Research Topic,
Legal Contract, Inflammation, Medical Guideline, Gene Ontology Top, Situation,
TimeInterval, etc.

43

Generic ontology requirements (GCQ)
Generic Competency Questions Specific Modelling Use Case

Who does what, when and where? Production reports, schedules

Which objects take part in a certain event? Resource allocation, biochemical pathways

What are the parts of something? Component schemas, warehouse management

What’s an object made of? Drug and food composition, e.g. for safety (comp.)

What’s the place of something? Geographic systems, resource allocation

What’s the time frame of something? Dynamic knowledge bases

What technique, method, practice is being used? Instructions, enterprise know-how database

Which tasks should be executed in order to achieve a certain goal? Planning, workflow management

Does this behaviour conform to a certain rule? Control systems, legal reasoning services

What’s the function of that artifact? System description

How is that object built? Control systems, quality check

What’s the design of that artifact? Project assistants, catalogues

How did that phenomenon happen? Diagnostic systems, physical models

What’s your role in that transaction? Activity diagrams, planning, organizational models

What that information is about? How is it realized? Information and content modelling, computational models, subject
directories

What argumentation model are you adopting for negotiating an
agreement?

Cooperation systems

What’s the degree of confidence that you give to this axiom? Ontology engineering tools

44

• A catalogue of CPs

• http://www.ontologydesignpatterns.org (odp-web)

• catalogue entry

• Annotation properties:

• http://www.ontologydesignpatterns.org/schemas/
cpannotationschema.owl

• annotation of OWL implementation of CPs

Presentation

45

45

http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

Example 1: AgentRole

46

46

Agent Role Instantiation

47

47

Example 2: Time Interval

48

48

This also uses transitivity reasoning pattern

Cf. http://www.ontologydesignpatterns.org/cp/owl/partOf.owl

Example 3: Part

49

49

http://www.loa-cnr.it/ontologies/DUL.owl
http://www.loa-cnr.it/ontologies/DUL.owl

This also uses N-ary logical pattern

Example 4: Time-indexed Participation

50

50

Example 5: Crime

51

Example 6: Aquatic Resource
Observation

52

(Re)use situations:
matching CPs covering against local problems

53

53

• Local problems can be expressed in different ways:

• use cases, scenarios, user requirements, local competency questions
(cqs), etc.

• Following [11] all can be transformed to local “cqs”.

• Red Hot Chili Peppers recorded the Stadium Arcadium album during
2005

• When did Red Hot Chili Peppers record the Stadium Arcadium album?

• Which albums did Red Hot Chili Peppers record during 2005?

• ...

• Local “cqs” are not usually at the same level of generality as the cqs of CPs

• e.g., they may contain reference to instance element e.g. Stadium
Arcadium

• we need to abstract them

• When did a certain band record a certain album?

• Which albums did a certain band record during a certain time period?

• ...

Representing local problems (LCQ)

54

54

• What do we mean by matching a cq to CPs?

• To compare the local cqs to the cqs covered by a CP in order
to evaluate the CP suitability for solving the local problems

• There is not yet automatic support for this task, hence it is
performed as a human task

• Ongoing work on automatic support for CP selection starting
from local cqs

• parsing of requirements and extraction of cqs

• formalization of cqs

• NLP support to match cqs terminology to CP lexicalizations

• case-based reasoning [13]

• ontology matching

• ...

What we mean by matching cqs to CPs

55

55

• A content pattern CP2 specializes CP1 if at least one ontology
element of CP2 is subsumed by an ontology element of CP1

• i.e., either by rdfs:subClassOf or rdfs:subPropertyOf

Sample Specialization

56

56

Sample composition

57

The resulting ontology is
composed of the union of the
ontology elements and axioms
from the two CPs, plus the
axioms (e.g. disjointness,
equivalence, etc.) that are
added in order to link the CPs

57

• Content ontology design patterns (CPs) come from the
experience of ontology engineers in modeling foundational, core,
or domain ontologies

• There are four ways of creating CPs, which can be summarized as
follows:

• Reengineering from patterns expressed in other data models

• Data model patterns, Lexical Frames, Workflow patterns,
Knowledge discovery patterns, etc.

• Specialization/Generalization/Composition of other CPs

• Extraction from reference ontologies (by cloning)

• Creation by combining extraction, specialization,
generalization, composition, and expansion

Where do CPs come from?

58

58

• Inspired by eXtreme Programming basic rules

• e.g., pair programming, test-oriented, continued integration,
etc.

• Main principles

• divide & conquer

• understand the task and express it by means of
competency questions

• re-use “good” solutions i.e., ontology design patterns

• evaluate the result against the task

• As an example, we apply an XD iteration with CPs

eXtreme ontology Design (XD)

59

• Sentence: Charlie Parker is the alto sax player on Lover Man, Dial, 1946

• Charlie Parker (person)

• the alto sax player (player role)

• on Lover Man (tune)

• Dial (publisher)

• 1946 (recording year)

• CQs

• what persons play a musical instrument?

• on what tune?

• for what publisher?

• in what recording year?

• Queries

• SELECT ?x ?y WHERE { ?x ?r ?y . ?x a :Person . ?y a :PlayerRole }

• SELECT ?x ?z WHERE { ?x ?r ?y . ?x a :Person . ?x ?s ?z . ?z a :Tune }

• SELECT ?z ?w WHERE { ?z ?t ?w . ?z a :Tune . ?w a :Publisher }

• SELECT ?z ?k WHERE { ?z :recordingYear ?k . ?z a :Tune . ?k a xsd:gYear }

Alternative abstractions do exist!

Sample XD iteration I/3

60

60

• Retrieve/Match cqs to CPs, or possibly propose new ones

• agentrole.owl, timeindexedpersonrole.owl, timeinterval.owl, ...

• Specialize/Compose/Expand CPs to local cq terminology

• person-playerrole, playing-instrument-on-a-tune, playing-on-a-tune-in-
recordingyear

• Populate ABox

• Person(CharlieParker), PlayerRole(AltoSaxPlayer), Tune(LoverMan),
Session(LoverManWithParkerOnDial), ...

Sample XD iteration 2/3

61

61

Sample XD iteration 3/3

• Run unit test/Iterate until fixed

• SELECT ?x ?y ?z ?w ?k

• WHERE {

• ?x ?r ?y .

• ?x a :Person .

• ?y a :PlayerRole .

• ?x ?s ?z .

• ?z a :Tune .

• ?z ?t ?w .

• ?w a :Publisher .

• ?z :recordingYear ?k .

• ?k a xsd:gYear }

• ?x=CharlieParker ?y=AltoSaxPlayer ?z=LoverMan ?w=Dial ?k=1946

62

62

• During a four-day course for PhD students

• Most have never constructed an ontology, or only a small example

• Mostly taxonomies or lightweight ontologies

• Most subjects familiar with some modeling language (like ER or UML), but
only a few have tried OWL

• Background questionnaires, ontology design exercises (end of every day),
subjective feedback questionnaire after exercise

• first two days no patterns, second two days with patterns

• Some preliminary results based on subjective feedback questionnaires only

• Main difficulties: mapping from the problem to the patterns, pattern
composition

• Most found the patterns useful and many perceived that they introduced
some solution they did not think of themselves

• Most perceived the second exercise as the easiest to solve, and the fourth
as the most successfully modeled

• The last day we have also got pattern proposals

Experiments: first results

63

63

✓ Bootstrapping and improving functionalities in the ODP portal

✓ ODP APIs

• Building the NeOn Toolkit ODP plugin

• Continue with experimentation

• Use of CBR for pattern-based automatic ontology construction

• Join the ODP community! http://www.ontologydesignpatterns.org

Ongoing and future work

64

64

http://www.ontologydesignpatterns.org
http://www.ontologydesignpatterns.org

• Designing Computational Ontologies

• Ontology Design Patterns

• ontologydesignpatterns.org initiative

Outline

65

65

ontologydesignpatterns.org (ODP)
a semantic web portal

Evaluation WikiFlow
a Semantic MediaWiki extension

66

66

ontologydesignpatterns.org (ODP)

• A semantic web portal
about OPs (Logical,
Content, Presentation ...)

• currently supports CPs

• best practices for
ontology design and
ontology engineering

• evaluation, training and
repository of reusable
OWL ontologies

67

67

ODP areas

• Community: share experience,
collects modeling issues and
domains

• Proposals: collects ProposedCP.

• Submissions by form and
import facility

• Reviews: guidelines and rationales.

• Open reviews and Quality
Committee reviews

• Catalogue: collects CertifiedCP
(complete, reusable, well-done)

• Training: tutorials, exercises

• Feedbacks: from users' feedback to
development tasks (Editorial
Board)

68

68

ODP types of user

69

69

ODP content

• Semantic representation

• Semantic MediaWiki (SMW)
and Semantic Forms (SF) +
exts

• Each pattern is described by:

• diagram

• annotations (user, name,
intent, domain(s), competency
questions, known uses,
consequences, OWL file,
related CPs and Ontologies

• elements (list, description)

• scenarios

• reviews

70

70

• Extends MW, SMW and SF
extension

• Evaluation tab

• Features:
• configuration
• functionality

Evaluation WikiFlow

71

71

Evaluation WikiFlow:
configuration

• Activation tab

• categories to evaluate.

• e.g. currently ODP activates it for the ProposedCP category.

• Review schema(s) customization

• different review schemas can be defined

• Category/review association

• categories to evaluate with review schemas

• E.g. ProposedLP and ProposedCP have different review
schemas

• User rights configuration

• view, ask for, assign, make, certify

• E.g. QualityCommity members make reviews, while every
ODPUser can request reviews

72

72

• ask for review: +WaitingForReview
• assign review: +AssignedReview
• make review: -WaitingForReview,

+AssignedReview.
• certify: +Certified, freezed; new

lifecycle.
• semantic report of evaluation history

• aim: to analyze rationales behind
evaluation of design patterns

Evaluation WikiFlow: functionality

73

73

● alpha version as open source software
● can be downloaded from the MediaWiki wiki site

● http://www.mediawiki.org/wiki/Extension:Evaluation_WikiFlow

Evaluation WikiFlow: software

74

74

http://www.mediawiki.org/wiki/Extension:Evaluation_WikiFlow
http://www.mediawiki.org/wiki/Extension:Evaluation_WikiFlow

Conclusion and future work

• Ontologydesignpatterns.org and Evaluation WikiFlow

• A community-based web portal (training, discussion and repository)

• A domain-independent extension for SMW and SF

• ODP ongoing and planned work includes

• new types of ontology design patterns

• e.g Logical, Reengineering
1st f2f editorial board meeting on Feb 23rd)

• a search service based on Watson
http://watson.kmi.open.ac.uk

• the ODP repository APIs

• OWL/RDF export service

• an open rating system for open reviews (based on NeOn ORS)

• statistical monitoring of CP downloads to be used as a dimension of
user-based evaluation of CPs and ODP usage

75

75

http://watson.kmi.open.ac.uk/
http://watson.kmi.open.ac.uk/

• 1. Valentina Presutti, Aldo Gangemi, Stefano David, Guadalupe Aguado de Cea, Mari-Carmen Suarez Figueroa,
Elena Montiel-Ponsoda, and Marıa Poveda. Library of design patterns for collaborative development of
networked ontologies. Deliverable D2.5.1, NeOn project, 2008.

• 2. Mari Carmen Suarez-Figueroa, Saartje Brockmans, Aldo Gangemi, Asuncion Gomez-Perez, Jos Lehmann,
Holger Lewen, Valentina Presutti, and Marta Sabou. Neon modelling components. Deliverable D5.1.1, NeOn
project, 2007.

• 3. Carola Catenacci, Jos Lehmann, Malvina Nissim, Valentina Presutti, and Geri Steve. Design rationales for
collaborative development of networked ontologies state of the art and the collaborative ontology design
ontology. Deliverable D2.1.1, NeOn project, 2007.

• 4. Aldo Gangemi, Jos Lehmann, Valentina Presutti, Malvina Nissim, and Carola Catenacci. C-ODO: an OWL
meta-model for collaborative ontology design. Workshop on Social and Collaborative Construction of
Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada, (2007).

• 5. Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, Jos Lehmann. Modelling Ontology Evaluation and
Validation, Y. Sure (ed.), Proceedings of the Third European Semantic Web Conference, Springer, 2006.

• 6. Denny Vrandecic, York Sure, Raul Palma, and Francisco Santana. Ontology repository and content
evaluation. Deliverable D1.2.10v2, KnowledgeWeb project, 2007.

• 7. Denny Vrandecic. Explicit Knowledge Engineering Patterns with Macros. In Proceedings of the Ontology
Patterns for the Semantic Web Workshop at the ISWC 2005, Galway, Ireland, November2005.

• 8. Aldo Gangemi. Ontology Design Patterns for Semantic Web Content.In Proceedings of the 4th
International Semantic Web Conference (ISWC2005), volume3729ofLNCS, Springer Verlag Berlin-
Heidelberg, November2005.

References (1)

76

76

• 9. Catalogue of ODPs focused on the biological knowledge domain, http://odps.sourceforge.net/

• 10. W3C Ontology Engineering and Patterns Task Force (OEP), http://www.w3.org/2001/sw/
BestPractices/OEP/

• 11. M. Gruninger and M. Fox. The role of competency questions in enterprise engineering. In
Proceedings of the IFIP WG5.7 Workshop on Benchmarking Theory and Practice, Trondheim, Norway,
1994.

• 12. Denny Vrandecic and Aldo Gangemi. Unit tests for ontologies. In Proceedings of the 1st
International Workshop on Ontology content and evaluation in Enterprise, Montpellier, France,
Springer, OCT2006.

• 13. Eva Blomqvist. Fully automatic construction of enterprise ontologies using design patterns: Initial
method and first experiences. In Robert Meersman, Zahir Tari, Mohand-Said Hacid, John Mylopoulos,
Barbara Pernici, Ozalp Babaoglu, Hans-Arno Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano
Spaccapietra, editors, OTM Conferences (2), volume 3761 of Lecture Notes in Computer Science,
pages 1314–1329. Springer, 2005.

• 14. Valentina Presutti and Aldo Gangemi. Content Ontology Design Patterns as Practical Building
Blocks for Web Ontologies. In Proceedings of the 27th International Conference on Conceptual
Modeling (ER 2008)

• 15. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini. Identification Constraints and
Functional Dependencies in Description Logics, IJCAI 2001.

• 16. François Scharffe, Jérome Euzenat, Ying Ding and Dieter Fensel. Correspondence Patterns for
Ontology Mediation. In Proceedings of the Ontology Matching Workshop at ISWC, 2007.

References (2)

77

77

http://odps.sourceforge.net
http://odps.sourceforge.net
http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.w3.org/2001/sw/BestPractices/OEP/
http://www.w3.org/2001/sw/BestPractices/OEP/

