OMV
Ontology Metadata Vocabulary
for the Semantic Web

Raul Palma (Universidad Politecnica de Madrid),
Jens Hartmann (University of Bremen) and
Peter Haase (Universitiat Karlsruhe (TH))

with contributions from:
Elena Paslaru Bontas (University of Innsbruck),
Holger Lewen (Universitiit Karlsruhe (TH)),
Natasha Noy (Stanford Center for Biomedical Informatics Research (BMIR)),
Mathieu d’Aquin (Open Univeristy)

Document Identifier | OMYV Report

Project Ontology Metadata Vocabulary
Version v2.4.1

Date March, 2009

State Final

Distribution public

Copyright (©) 2009 OMV Consortium

OMY Consortium

The Ontology Metadata Vocabulary is based on discussions and agreement among the following consortium.

University of Bremen (TZI)

TZI - Center for Computing Technologies
Universitit Bremen

D-28359 Bremen

Germany

Fax: +49 421 2182449, Phone: +49 421 2187196
Contact person: Jens Hartmann

E-mail address: jh@tzi.de

University of Karlsruhe (UKARL)

Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitit Karlsruhe (TH)

D-76128 Karlsruhe

Germany

Fax: +49 721 6086580, Phone: +49 721 6089705
Contact person: Peter Haase

E-mail address: haase @aifb.uni-karlsruhe.de

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Fax: +34-913524819, Phone: +34-913367439
Contact person: Raul Palma, Asuncién Gémez Pérez
E-mail address: asun@fi.upm.es

Stanford Center for Biomedical Informatics
Research (BMIR)

MSOB x-249,

251 Campus Drive

Stanford, CA 94305-5479

USA

Fax: +1-650-7257944 , Phone: +1-650-7236725
Contact person: Natasha Noy

E-mail address: noy @stanford.edu

Changes

Version 2.4

OMV-overview figure updated
dataProperty added: reference.
Changed the cardinality of statistics properties to 0:1 (optional).

Move the following dataProperties to DL extension: containsABox, containsRBox, con-
tainsTBox, expressiveness

Changed cardinality of objectProperties isOfType, hasOntologySyntax to 0:1 (optional)
Added predefined instances of OntologyEngineeringTool
Fixed developesxxx to developsxxx

Changed usedKnowledgeRepresentationParadigm to conformsToKnowledgeRepresentation-
Paradigm

Move dataProperty isConsistentAccordingToReasoner to evaluation extension
Added objectProperty endorses

Deleted objectProperties: developsOntologyEngineeringMethodology, developsOntologyEngi-
neeringTool, developsOntologyLanguage, developsOntologySyntax , specifiesLicenseModel,
specifiesKnowledgeRepresentationParadigm, definesOntologyType

Added objectProperties develops, specifies, defines
Updated inverse relations
minor fixes

update description to OWL 2 specification.

Version 2.3

dataProperty Added: containsTBox.
dataProperty Added: containsRBox.
dataProperty Added: containsABox
dataProperty Added: expressiveness
objectProperty Added: endorsedBy
Renaming: consistencyAccordingToReasoner - isConsistentAccordingToReasoner

name cardinality set to >=1

11

resourceLocator cardinality set to =1

naturalLanguage reference to ISO 639

Section Updated: identification, versioning and location

e minor fixes

Version 2.2

e Section Added: identification, versioning and location

dataProperty Added: consistencyAccordingToReasoner.

dataProperty Added: keyClasses.

dataProperty Added: notes

objectProperty Added: knownUsage

Pre-defined instances updated for formality level class.

Version 2

o Moved Ontology Conceptualisation class into an Extension.

Definition of the naming convention used.

Renaming: Ontology Implementation class - Ontology

Renaming: Ontology Conceptualisation class - Conceptualisation

Several re-namings of properties.

New class OntologyDomain

Version 0.9.5
e Strict naming conventions applied for OC and OI. Hence several re-namings.
e Moved *Reviewer attributes into Evaluation extension
e Changed several cardinalities
e ReNaming: Ol.language - naturalLangugage
e ReNaming: Ol.usedTool - usedOntologyEngineeringTool
e ReNaming: Ol.ontologyLanguage - representedByOntologyLanguage
o ReNaming: Ol.ontologySyntax - representedByOntologySyntax

e ReNaming: Ol.versionInfo - implementationVersion

1l

ReNaming: Ol.formalityLevel - implementationFormalityLevel

New Class OntologyFormalityLevel

ReNaming: Ol.ontologyURL - implementationURL

ReNaming: OLimports - implementationImports

ReNaming: Ol.priorVersion - implementationPriorVersion
ReNaming: Ol.backwardCompatibleWidth - imeplementationBackwardCompatibleWith
ReNaming: Ol.incompatibleWith - implementationIncompatibleWith
ReNaming: Ol.num* - implementationNum*

ReNaming: Party.developedTool - developedEngineeringTool
ReNaming: Party.specifiedLicense - specifiedLicenseModel
ReNaming: Person.* - Person.person*

ReNaming: Organisation.* - Organisation.organisation*

ReNaming: Organisation.contactPerson - hasContactPerson

Version 0.9.1

Rename of ontology document into Ontologylmplementation

Moved class OntologyReview into Evaluation Extension

Several re-namings

New extensions: OntologyApplication, OntologyUsage, Directives, ...
Introduced property formalityLevel for Ontologylmplementation

New class OntologyTask

Version 0.9

Rename of ontology base into conceptualisation
Introduced class OntologyReview

New objectproperty contributorOfReview for class party
Several re-namings due introduction of conceptualisation

Introduced class Locat ion. Hence, removed property adress from class party.

Executive Summary

Ontologies have seen quite an enormous development and application in many domains
within the last years, especially in the context of the next web generation, the Semantic
Web. Besides the work of countless researchers across the world, industry starts develop-
ing ontologies to support their daily operative business. Currently, most ontologies exist
in pure form without any additional information, e.g. authorship information, such as
provided by Dublin Core for text documents. This burden makes it difficult for academia
and industry e.g. to identify, find and apply — basically meaning to reuse — ontologies
effectively and efficiently.

Hence we propose a metadata vocabulary for ontologies, so called Ontology Metadata
Vocabulary (OMV).

Contents

1 Introduction
2 Preliminary considerations
2.1 Terminology e
2.2 Naming conventionS v v v vt e e e e
2.2.1 Delimiters and capitalization
2.2.2 Prefixconventions
223 Singularform L
2.2.4 Additional considerations
2.3 Notations o e e
3 Ontology Metadata Requirements
4 OMY - Ontology Metadata Vocabulary
4.1 Coreand Extensionso
4.2 Ontological Representation
4.3 Identification, Versioning and Location
4.4 OMV core metadata entities
S OMY Core Ontology
5.1 Ontology e
5.2 OntologyType e
5.2.1 Pre-defined ontology types
5.3 LicenseModel
5.3.1 Pre-defined licensemodels
5.4 OntologyEngineeringMethodology
5.5 OntologyEngineeringTool
5.5.1 Pre-defined ontology languages
5.6 OntologySyntax
5.6.1 Pre-defined ontology syntaxes
5.7 OntologyLanguage,
5.7.1 Pre-defined ontology languages
5.8 KnowledgeRepresentationParadigm

oo o0 R

O

12

vi

5.8.1 Pre-defined knowledge representation paradigms

5.9 FormalityLevel

5.9.1 Pre-defined formality levels
5.10 OntologyTask

5.10.1 Pre-defined ontology tasks
5.11 OntologyDomain
502 Party
SA3 Person
5.14 Organisation
5.5 Location oL

6 OMY Extensions
7 Using Metadata

8 Conclusion

CONTENTS

Chapter 1

Introduction

Ontologies are intended to be used as a shared means of communication between com-
puters and between humans and computers. A core requirement for the achievement of
this goal is the usage of open standards and technologies for the representation, descrip-
tion, access and exchange of the ontological sources. Consider, for example, the W3C
standardized Web Ontology Language OWL [16]. Using this representation language in-
stead of a proprietary format would clearly increase the usability of an ontology at Web
scale. The same applies for the means employed to describe existing ontologies or for the
technological infrastructure supporting their management and exchange.

In contrast to plain Web documents, the majority of implemented ontologies are cur-
rently put into widespread use on the Web without any additional metadata information.
This deficiency seriously affects the reusability of Semantic Web ontologies: without any
metadata information potential ontology users cannot find and deploy them effectively
and efficiently. In order to cope with this problem, it is necessary to agree on a stan-
dard for ontology metadata, a vocabulary of terms and definitions describing ontologies.
Replicating the positive experiences in other information management areas e.g. Digital
Libraries, implementing such a vocabulary in conjunction with a solid technological in-
frastructure for creating, maintaining and distributing metadata is expected to increase the
real value of ontologies by facilitating their wide scale sharing and reuse.

In this report we describe our contribution to the alleviation of this situation: the ontol-
ogy metadata standard OMV (Ontology Metadata Vocabulary), which specifies reusability-
enhancing ontology features for human and machine processing purposes. The remaining
of this report is organized as follows: after clarifying the applied terminology and naming
conventions (Chapter 2) we perform an analysis of the requirements for the realization of
the proposed ontology metadata scheme in Chapter 3. We introduce the main ideas behind
the OMV vocabulary and give a detailed description of the metadata and its extensions
in Chapters 4, 5 and 6, respectively. The usage of the metadata is illustrated in Chapter
7. Finally we summarize our work and sketch its current limitations and future research
directions in Chapter 8.

Chapter 2

Preliminary considerations

2.1 Terminology

In this section we clarify our understanding of the concept of metadata for ontologies:

e Metadata - data about data

Ontology Metadata - metadata which provides information about ontologies

Metadata Ontology - an ontology representing metadata information

Metadata Entity - an element of a metadata scheme

e OMYV - Ontology Metadata Vocabulary - The acronym of the proposed ontology
metadata scheme

Metadata Categories - we differentiate among the following three occurrence con-
straints for metadata elements, according to their impact on the prospected reusabil-
ity of the described ontological content:

— Required - mandatory metadata elements. Any missing entry in this category
leads to an incomplete description of the ontology.

— Optional - important metadata facts, but not strongly required.

— Extensional - specialized metadata entities, which are not considered to be
part of the core metadata scheme.

Complementary to this classification we organize the metadata elements according
to the type and purpose of the contained information as follows:

— General - elements providing general information about the ontology.

2

2.2. NAMING CONVENTIONS 3

— Availability - information about the location of the ontology (e.g. its URI or
URL where the ontology is published on the Web)

— Applicability - information about the intended usage or scope of the ontology.

— Format - information about the physical representation of the resource. In
terms of ontologies these elements include information about the representa-
tion language(s) in which the ontology is formalized.

— Provenance - information about the organizations contributing to the creation
of the ontology.

— Relationship - information about relationships to other resources. This cat-
egory include versioning, as well as conceptual relationships such as exten-
sions, generalization/specialization and imports.

— Statistics - various metrics on the underlying graph topology of an ontology
(e.g. number of classes)

— Other - information not covered in the categories listed above.

Note that the introduced classification dimensions are not intended to be part of the
metadata scheme itself, but will be taken into consideration by the implementation
of several metadata support facilities. The first dimension is relevant for a metadata
creation service in order to ensure a minimal set of useful metadata entries for each
of the described resources. The second can be used in various settings mainly to
reduce the user-perceived complexity of the metadata scheme whose elements can
be structured according to the corresponding classes.

2.2 Naming conventions

Choosing a naming convention for ontology modelling and adhere to these conventions
makes the ontology easier to understand and helps to avoid some common modelling
mistakes. For the modelling of OMV we adopted the following set of conventions for
classes, properties and instances:

2.2.1 Delimiters and capitalization

e (Class Names - Class names are capitalized. If the class name contains more than
one word, we use concatenated words and capitalize each new word. I.e. ”Ontol-
ogy” ”OntologySyntax”

e Property Names - Property names use lower case. If the property name contains
more than one word, we use concatenated words where the first word is all in lower
case and capitalize each subsequent new word. l.e. “name” “naturalLanguage”
“hasLicense”

4 CHAPTER 2. PRELIMINARY CONSIDERATIONS

e Instance Names - Instance names use lower case. If the instance name contains
more than one word, we use concatenated words where the first word is all in lower
case and capitalize each subsequent new word. L.e. ’peter”.

2.2.2 Prefix conventions

OMYV use prefix conventions to distinguish DatatypeProperty and ObjectProperty. Thus,
the ObjectProperties start with a verb specifying how the two classes are related to each
other. I.e. ”specifiedBy” “usedOntologyEngineeringTool” “hasOntologySyntax”. For
DatatypeProperties, names are usually nouns (e.g. acronym, description) or a combina-
tion of adjectives with nouns (e.g. knownUsage). An exception to this convention are the
names of boolean DatatypeProperties that also start with a verb (i.e. similar to construct-
ing a question (e.g. isConsistentAccordingToReasoner)).

2.2.3 Singular form

The convention adopted in OMV was to use names for classes, properties and instances
in singular form. The decision was based on the fact that singular form is used more often
in practice in many domains. Besides, when working with XML, for example, importing
legacy XML or generating XML feeds from the ontology, it is necessary to make sure to
use a singular form since this is expected convention for XML tags.

2.2.4 Additional considerations

e When a word within a name is all capitals, the next word should start in lower case.
An hypothetical example: "URLoriginal”

e Do not add strings such as “class” or "attribute”, and so on to the names.

e Do not concatenate the name of the class to the properties or instances, i.e. there is
no “ontologyName” “ontologySyntaxName”

e Do not use abbreviations in the names of classes or instances, and try to avoid
abbreviations on property names.

2.3 Notations

In the following we give an overview of the notations used in this report for represent-
ing the OMV metadata entities. The metadata scheme is formalized as a Semantic Web
ontology in OWL (the introduced examples conform to the OWL RDF-XML syntax).

2.3. NOTATIONS

Name of the OMYV metadata entity ‘

Name (Case sensitive) name of the metadata entity.
Type The type of ontological primitive used to represent the entity in OWL:
Class,ObjectProperty or DatatypeProperty.
Identifier Unique identifier used for this entity.
Occurrence Constraint | One of the following: required, optional or extensional
Category The content/purpose category the entity belongs to, as introduced above.
Definition A short definition of the purpose, which might
be elaborated in the comment s tag.
Domain Domain of OMYV entity (for OWL properties)
Range Range of OMV entity (for OWL properties).
Cardinality Cardinality of OMYV entity (MIN:MAX).
OMYV version OMYV version, in which the entity has been introduced.
Comments Detailed description of the entity.

Table 2.1: Template for a metadata entry

Further on OMV uses the following namespaces:

owl ="http://www.
rdf ="http://www.
rdfs="http://www.
xsd ="http://www.
omv ="http://omv.

w3.0rg/2002/07/owl#"
w3.0rg/1999/02/22-rdf-syntax—-ns#"
w3.0rg/2000/01/rdf-schema#"
w3.0rg/2001/XMLSchema#"
ontoware.org/ontology#"

A metadata entity can be a class or property (DatatypeProperty, ObjectProperty) of
the OMYV ontology. Every entity is described using the template illustrated by Table 2.1.

Chapter 3

Ontology Metadata Requirements

We elaborated an inventory of requirements for the metadata model as a result of a sys-
tematic survey of the state of the art in the area of ontology reuse. Besides analytical
activities, we conducted extensive literature research, which focused on theoretical meth-
ods [14, 4, 9], but also on case studies on reusing existing ontologies [17, 15, 13], in order
to identify the real-world needs of the community w.r.t. a descriptive metadata format for
ontologies. Further on, the requirements analysis phase was complemented by a com-
parative study of existing (ontology-independent) metadata models and of tools such as
ontology repositories and libraries (implicitly) making use of metadata-like information.
Several aspects are definitely similar to other metadata standards such as Dublin Core.
Differences arise however if we consider the semantic nature of ontologies, which are
much more than plain Web information sources. In accordance to one of the major princi-
ples in Ontological Engineering an ontology comprises a conceptual model of a particular
domain of interest, represented at knowledge level, and multiple implementations using
knowledge representation languages. These two components are characterized by differ-
ent properties and can be developed and maintained separately. The main requirements
identified in this process step are the following:

Accessibility: Metadata should be accessible and processable for both humans and ma-
chines. While the human-driven aspects are ensured by the usage of natural lan-
guage concept names, the machine-readability requirement can be implemented by
the usage of Web-compatible representation languages (such as XML or Semantic
Web languages, see below).

Usability: This requirement states for the necessity of building a metadata model which
1) reflects the needs of the majority of ontology users, as reported by current case
studies in ontology reuse, but in the same time 2) allows proprietary extensions
and refinements in particular application scenarios. From a content perspective,
usability can be maximized by taking into account multiple metadata types, which
correspond to specific viewpoints on the ontological resources and are applied in
various application tasks. Despite the broad understanding of the metadata concept

6

and the use cases associated to each definition, several key aspects of metadata
information have already established across computer science fields [12]:

e Structural metadata relates to statistical measures on the graph structure un-
derlying an ontology. In particular we mention the number of specific on-
tological primitives (e.g. number of classes, instances). The availability of
structural metadata influences the usability of an ontology in a concrete appli-
cation scenario, as size and structure parameters constraint the type of tools
and methods which are applied to aid the reuse process.

e Descriptive metadata relates to the domain modelled in the ontology in form
of keywords, topic classifications, textual descriptions of the ontology con-
tents etc. This type of metadata plays a crucial role in the selection of ap-
propriate reuse candidates, a process which includes requirements w.r.t. the
domain of the ontologies to be re-used.

e Administrative metadata provides information to help manage ontologies,
such as when and how it was created, rights management, file format and
other technical information.

Interoperability: Similarly to the ontology it describes, metadata information should be
available in a form which facilitates metadata exchange among applications. While
the syntactical aspects of interoperability are covered by the usage of standard rep-
resentation languages (see “Accessibility”), the semantical interoperability among
machines handling ontology metadata information can be ensured by means of an
formal and explicit representation of the meaning of the metadata entities, i.e. by
conceptualizing the metadata vocabulary itself as an ontology.

Chapter 4

OMY - Ontology Metadata Vocabulary

This chapter gives an overview of the core design principles applied for the realization of
the OMV metadata scheme, which is described in detail in the remainder of the report.

4.1 Core and Extensions

Following the usability constraints identifies during the requirements analysis, we decided
to design the OMV scheme modularly; OMV distinguishes between the OMV Core and
various OMV Extensions. The former captures information which is expected to be rel-
evant to the majority of ontology reuse settings. However, in order to allow ontology
developers and users to specify task- or application-specific ontology-related information
we foresee the development of OMV extension modules, which are physically separated
from the core scheme, while remaining compatible to its elements.

4.2 Ontological Representation

Due to the high accessibility and interoperability requirements, as well as the nature of the
metadata, which is intended to describe Semantic Web ontologies, the conceptual model
designed in the previous step was implemented in the OWL language. An implementa-
tion as XML-Schema or DTD was estimated to restrict the functionality of the ontology
management tools using the metadata information (mainly in terms of retrieval capabili-
ties) and to impede metadata exchange at semantical level. Further on, a language such
as RDFS does not provide a means to distinguish between required and optional meta-
data properties. The implementation was performed manually by means of a common
ontology editor.

4.3. IDENTIFICATION, VERSIONING AND LOCATION 9

4.3 Identification, Versioning and Location

An important issue that has to be addressed when describing ontologies is the ability
to identify and manage multiple versions and physical representations of one ontology.
The OWL ontology language itself did not provide the means to address this issue until
the latest release of OWL 2! where they partially address it: In OWL 2, an ontology
is identified by an IRI [3] (if available). Hence, OWL 2 extends OWL 1, which uses
Uniform Resource Identifiers (URIs) [1]. Additionally, an ontology may have a version
IRI, which is used to identify the version of the ontology. The version IRI may, but need
not be equal to the ontology IRI. However, the specification provides no mechanism for
enforcing these constraints across the entire Web.

Versioning In general, a version is a variant of an ontology that is usually created after
applying changes to an existing variant. Therefore we need a way to unambiguously
identify the different versions as well as to keep track of the relationships between them.
Based on [7], we consider that changes in ontologies are caused by: (i) changes in the
domain; (ii) changes in the shared conceptualization; (iii) changes in the specification.
Taking the definition of an ontology as a specification of a conceptualization, (i) and
(i1) are semantic changes that lead to the creation of a new conceptualization, while (iii)
is just a change in the representation of the same conceptualization (also known as a
new revision) (e.g. updates of natural language descriptions of ontology elements). In
any case, the change(s) result in a different physical representation of the ontology (i.e.
different version). Consequently, it should be possible to identify each of those versions.

However, as we mentioned above OWL 1 does not distinguish between the notion of
an ontology and a version of an ontology at all. It may thus be that different versions
of ontology carry the same logical URI. Only in the latest specification of OWL 2, it is
proposed that the ontology IRI and the version IRI together identify a particular version
from an ontology series i.e. the set of all the versions of a particular ontology identified
using a common ontology IRI. In each ontology series, exactly one ontology version is
regarded as the current one.

So, typically (as OWL 2 has just been released) existing ontologies are identified by
an URI, which according to [1] is a compact string of characters for identifying an abstract
or physical resource. In [7] the authors propose that any version that constitutes a new
conceptualization (i.e. changes of type (i) and (ii)) should have a unique URI, however in
practice different versions of same ontology might share the same URI. Furthermore, even
if a revision constitutes the same conceptualization of an ontology it is physically repre-
sented in a different file which might have additional metadata (e.g. updated ontology
description, descriptions in different natural languages, different file location, etc.).

In OMV we describe a particular representation of an ontology, i.e. an ontology in a
particular version at a particular physical location. That means that every different version

"http://www.w3.0rg/TR/2008/WD-owl2-syntax—20081202/

10 CHAPTER 4. OMV - ONTOLOGY METADATA VOCABULARY

of an ontology has a different OMV related metadata.

Currently however, most ontologies either do not provide any version information at
all or the ontology editors explicitly do not want to change the version of the ontology
after making some changes. In those cases, whenever the ontology changes, the related
OMV annotation will have to be updated accordingly instead of creating a new OMV
instance (i.e. including updating the date of the last time the ontology was modified).

Resource Location In addition to the issue of versioning, an ontology (or a version
of an ontology) can be located at different locations. Thus, ontologies with the same
logical URI (IRI in OWL 2) may exist at different physical locations, possibly even with
different content. Similar to versioning, only the latest OWL 2 specification provides
some conventions for the location of an ontology: Each ontology is associated with an
ontology document, which physically contains the ontology stored in a particular way.
The document containing the current version of an ontology series with some IRI OI
should be accessible from OI. A particular version of OI with version IRI VI, should be
accessible from VI.

In practice however (as OWL 2 has just been released), the location of the ontology
is not necessarily equal to the URI of the ontology. So, following the approach for ver-
sioning, we rely on a composite identifier consisting of the logical identifier i.e. URI
(ontology IRI in OWL 2) plus optional version identifier (version IRI in OWL 2), and a
resource locator that specifies the actual physical location.

Of course, the optional version identifier and the optional resource locator can be
combined, such that we end up with a tripartite identifier (URI, version, resource locator).

OMVY identity Based on the previous discussion, we propose the following composite
URI to identify an OMYV instance which should be treated just as one possible approach
(i.e. the system implementing OMV can choose its own OMV identity):

Ontology URI + ? [version=<version >;]location=<resourceLocator >#metadata

where the resourcelocator is the physical location of the ontology (i.e. the resource-
Locator property) and version is the ontology version (i.e. the version property)

Ilustrative Example In order to clarify the discussion consider the following sce-
nario: Initially, we have the first implementation of ontology OWLODM (i.e. http:
//owlodm.ontoware.org/OWL1 . 0) which provides a metamodel for the ontology
language OWL 1.0. A fragment of the OMV description for OWLODM version 1.0 is the
following:

<omv:0Ontology rdf:about=

"&3;O0WL1.0?version=1.0; location=http://ontoware.org/frs/download.php/307/0owll0.owlf#metadata">
<omv:URI rdf:datatype="&xsd;string">http://owlodm.ontoware.org/OWL1l.0</omv:URI>
<omv:version rdf:datatype="&xsd;string">1.0</omv:version>
<omv:resourcelLocator rdf:datatype="&xsd;string">

4.3. IDENTIFICATION, VERSIONING AND LOCATION 11

http://ontoware.org/frs/download.php/307/0owll0.owl</omv:resourceLocator>
<omv:acronym rdf:datatype="&xsd;string">OWLODM</omv:acronym>

<omv:description rdf:datatype="&xsd;string">OWL Object Definition Metamodel

(ODM) allows interoperability of OWL ontologies with MOF-compatible

software environments</omv:description>

<omv:name rdf:datatype="&xsd;string">OWL Ontology Definition Metamodel</omv:name>
<omv:numberOfClasses rdf:datatype="&xsd;unsignedInt">35</omv:numberOfClasses>
<omv:numberOfProperties rdf:datatype="&xsd;unsignedInt">22</omv:numberOfProperties>
<omv:hasCreator rdf:resource="#PeterHaase"/>

<omv:hasDomain rdf:resource="&c;Knowledge Representation"/>

<omv:creationDate rdf:datatype="&xsd;string">2007-02-12</omv:creationDate>

</omv:Ontology>

A change in the domain modelled by OWLODM (i.e. the definition of OWL 1.1) was
reflected in a new version of the OWLODM ontology, namely version 1.1. This change
leaded to a semantic change of the ontology (i.e. change of type (i)), and therefore a new
URI was defined for OWLODM (i.e. http://owlodm.ontoware.org/OWL1.1).
A fragment of the OMV description for OWLODM version 1.1 is the following:

<omv:0Ontology rdf:about=
"§&3;O0WL1.1?version=1.1;location=http://ontoware.org/frs/download.php/365/owlll.owlf#metadata">
<omv:URI rdf:datatype="&xsd;string">http://owlodm.ontoware.org/OWL1l.1</omv:URI>
<omv:version rdf:datatype="&xsd;string">1.1</omv:version>
<omv:resourcelLocator rdf:datatype="&xsd;string">
http://ontoware.org/frs/download.php/365/owlll.owl</omv:resourcelocator>
<omv:acronym rdf:datatype="&xsd;string">OWLODM</omv:acronym>
<omv:description rdf:datatype="&xsd;string">OWL Object Definition Metamodel
(ODM) allows interoperability of OWL ontologies with MOF-compatible
software environments</omv:description>
<omv:name rdf:datatype="&xsd;string">OWL Ontology Definition Metamodel</omv:name>
<omv:numberOfClasses rdf:datatype="&xsd;unsignedInt">76</omv:numberOfClasses>
<omv:numberOfProperties rdf:datatype="&xsd;unsignedInt">35</omv:numberOfProperties>
<omv:hasCreator rdf:resource="#PeterHaase"/>
<omv:hasDomain rdf:resource="&c;Knowledge Representation"/>
<omv:creationDate rdf:datatype="&xsd;string">2007-08-09</omv:creationDate>

</omv:Ontology>

Finally, a new version of OWLODM (i.e. version 1.2) was released as a result of a
refinement. In this case, the change was at the level of the specification of the ontology
(i.e. change type (iii)), in particular the renaming of a property and hence the URI was
not updated. A fragment of the OMV description for the OWLODM version 1.2 is the
following:

<omv:0Ontology rdf:about=
"§&j;OWL1.1?version=1.2;location=http://ontoware.org/frs/download.php/366/0owlll.owl#metadata">
<omv:URI rdf:datatype="&xsd;string">http://owlodm.ontoware.org/OWLl.1</omv:URI>
<omv:version rdf:datatype="&xsd;string">1.2</omv:version>
<omv:resourcelLocator rdf:datatype="&xsd;string">
http://ontoware.org/frs/download.php/366/owlll.owl</omv:resourcelLocator>
<omv:acronym rdf:datatype="&xsd; string">0OWLODM</omv:acronym>
<omv:description rdf:datatype="&xsd;string">OWL Object Definition Metamodel
(ODM) allows interoperability of OWL ontologies with MOF-compatible
software environments</omv:description>
<omv:name rdf:datatype="&xsd;string">0OWL Ontology Definition Metamodel</omv:name>
<omv:numberOfClasses rdf:datatype="&xsd;unsignedInt">76</omv:numberOfClasses>
<omv:numberOfProperties rdf:datatype="&xsd;unsignedInt">35</omv:numberOfProperties>
<omv:hasCreator rdf:resource="#PeterHaase"/>
<omv:hasDomain rdf:resource="&c;Knowledge Representation"/>
<omv:creationDate rdf:datatype="&xsd;string">2007-08-10</omv:creationDate>

</omv:Ontology>

12 CHAPTER 4. OMV - ONTOLOGY METADATA VOCABULARY

As we can see from the previous simple example, the URI is not enough to identify
individually each version of the ontology. Besides, in practice not every semantic change
leads to the definition of a new URI (as in this example). Even more, in this example it
was enough the URI plus the version to identify each physical implementation, however it
could also be possible that the same ontology version is located at two (or more) different
physical location, where each of them could have even different content as we anticipated
in the previous section. In that case we will also need the location of the ontology to
identify a particular implementation (i.e. URI plus version plus location).

4.4 OMY core metadata entities

The main classes and properties of the OMV ontology are illustrated in Figure 4.1°.

Additionally to the main class Ontology the metadata scheme contains further el-
ements describing various aspects related to the creation, management and usage of an
ontology. We will briefly discuss these in the following. In a typical ontology engineer-
ing process Persons or Organisation(s) are developing ontologies. We group these
two classes under the generic class Party by a subclass-of relation. A Party
can have several locations by referring to a Location individual and can create, con-
tribute to ontological resources i.e. Ontology Implementations. Review details
and further information can be captured in an extensional OMV module (see Chapter
6). Further on we provide information about the engineering process the ontology orig-
inally resulted from in terms of the classes OntologyEngineeringMethodology,
OntologyEngineeringTool and the attributes version, status, creationDate
and modificationDate. Again these can be elaborated as an extension of the core
metadata scheme. The usage history of the ontology is modelled by classes such as the
OntologyTask and LicenceModel. The scheme also contains a representation of
the most significant intrinsic features of an ontology. Details on ontology languages are
representable with the help of the classes OntologySyntax, OntologyLanguage
and KnowledgeRepresentationParadigm. Ontologies might be categorized along
a multitude of dimensions. One of the most popular classification differentiates among
application,domain, core, task and upper—1level ontologies. A further clas-
sification relies on their level of formality and types of Knowledge Representation (KR)
primitives supported, introducing catalogues, glossaries, thesauri, taxonomies, frames etc.
as types of ontologies. These can be modelled as instances of the class OntologyType,
while generic formality levels are introduced with the help of the class FormalityLevel.
The domain the ontology describes is represented by the class OntologyDomain refer-
encing a pre-defined topic hierarchy such as the DMOZ hierarchy. Further content infor-
mation can be provided as values of the DatatypeProperties description, keywords,
and documentation. Finally the metadata scheme gives an overview of the graph

ZPlease notice, that not all classes and properties are included. The ontology is available for download
in several ontology formats at http://omv.ontoware.org/

4.4. OMV CORE METADATA ENTITIES 13

0:n specifiedBy

Class Name
0:n definedBy DatatypeProperty
Li Model KnowledgeRepresen-
icensellodel | |tationParadigm OntologyType Domain
* name * name « name ObjectProperty
« acronym * acronym - acronym Range
« description * description « description 5 MIN:MAX Cardinality
)
. i . i . 3
documenation documentation « documentation HA
P 4T
s r' N T L O
O o n
0:1 hasLicense 0:n conforms- 0:1]isOfType 88 &
toKRParadigm ® 0 T
225 .
o e a Location
FormalityLevel |4 s
0:1 hasFor- Ontology «land, state
malityLevel . ’
*«name “ © « city, street
) «URI s
* acronym E . - vyvYvey A
p ot S « version b
« description —~
P 52 « resourceLocator <> Party
« documenation ap 84 O:nlisLocatedAt
= © * name ™
Sae £ 3
n .Q O * acronym S8 <
PR %
« description
o E 8.2 P subclass—of,’ xxsubclass—of
82 o « documentation R LN
£ 84 0 0 . .
LU E S « keywords Organisation Person
5254
R] .
« creationDate . o fi
OntologyTask e a name firstName
55888 « modificationDate acron * lastName
. ym)
« name * eMail
« naturalLanguage « phoneNumber
° acronym 0:n designed-
- . » numberOfClasses « faxNumber
« description ForOntologyTask
« documenation < * numberOfProperties
« numberOfindividuals 0:n hasContactPerson
* numberOfAxioms
0:nfhasDomain 1:1 hasOntologyLanguage
O:n .
usedontologyEngin- 0:1 hasOntologySyntax
eeringMethodology

0:n usedOntology
EngineeringTool
\ 4 A 4 v v v

.| |OntologyEnginee- OntologyEngi-
OntologyDomain g OntologySyntax| |OntologyLanguage
L ringMethodology neeringTool gyoy gyl-anguag

* name * name * name
* name * hame
 acronym * acronym * acronym
- « acronym « acronym - o
« description « description * description

* description » description

. i » documentation » documentation
documenation » documenation

« documentation

O:n [...]developedBy OMV v.2.4

Figure 4.1: OMV overview

14 CHAPTER 4. OMV - ONTOLOGY METADATA VOCABULARY

topology of an Ont o1l ogy with the help of several graph-related metrics represented as
integer values of the DatatypeProperties numberOfClasses, numberOfProperties,

numberOfAxioms, numberOfIndividuals.
We now turn to a detailed description of the OMV model and its planed extensions.

Chapter 5

OMY Core Ontology

In the following we introduce the metadata elements of OMYV, the first metadata standard
for ontologies. As aforementioned, OMV is formalized as an OWL ontology. A metadata
element is modelled either by means of classes and individuals or by means of valued
properties. The decision for one of these two alternatives was justified by the complexity
of the corresponding metadata element. If the value/content of a metadata element can
be easily mapped to conventional data types (numerical, literal, list values) the metadata
element is usually represented as a DatatypeProperty. Complex metadata elements which
do not fall into the previous category are modelled by means of additional classes linked
by ObjectProperties.

The description of the model is grouped along the core classes of the ontology. For
each class we describe the meaning of its properties and additional usage and occurrence
constraints.

15

16 CHAPTER 5. OMV CORE ONTOLOGY

5.1 Ontology

Aspects of specific realizations are covered modular (and extendable) by the class
Ontology.

] Ontology \
Name Ontology
Type class
Identifier
Definition An implementation of a conceptual model
OMYV version | 0.1
Comments None
Table 5.1: Class: Ontology
URI
Name URI
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category General information
Definition The URI of the ontology which is described by this metadata.
It serves as a logical identifer and is not necessarily
the physical location
Domain omv:0Ontology
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None

Table 5.2: Property: URI

5.1. ONTOLOGY

17

’ name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category General information
Definition The name by which an ontology is formally known
Domain omv:0Ontology
Range xsd:string
Cardinality I:n
OMYV version 0.1
Comments The ontology can have many names
(e.g. names in different languages)
Table 5.3: Property: name
acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition A short name by which an ontology is formally known
Domain omv:Ontology
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None
Table 5.4: Property: acronym
description ‘
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category General information
Definition Free text description of an ontology
Domain omv:0Ontology
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None

Table 5.5: Property: description

18

CHAPTER 5. OMV CORE ONTOLOGY

documentation ‘
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition URL for further documentation
Domain omv:Ontology
Range xsd:string
Cardinality 0:1
OMYV version 0.2
Comments None
Table 5.6: documentation
reference
Name reference
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition List of bibliographic references describing the
ontology and its applications
Domain omv:Ontology
Range xsd:string
Cardinality 0:1
OMYV version 2.4
Comments None
Table 5.7: reference
notes
Name notes
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition Additional information about the ontology that
is not included somewhere else (e.g. information that you do
not want to include in the documentation)
Domain omv:0Ontology
Range xsd:string
Cardinality 0:1
OMYV version 2.2
Comments None

Table 5.8: notes

5.1. ONTOLOGY

naturalLanguage
Name naturallLanguage
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition The language of the content of the ontology,
i.e. English, German, etc.
Domain omv:0Ontology
Range xsd:string
Cardinality O:n
OMYV version 0.1
Comments Pre-defined values according to the names of languages
defined in ISO 639
Table 5.9: Property: naturalLanguage
keywords
Name keywords
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition List of keywords related to an ontology
Domain omv:Ontology
Range xsd:string
Cardinality O:n
OMV version 0.1
Comments Typically this set includes words that describe the content
of the ontology

Table 5.10: Property: keywords

19

20 CHAPTER 5. OMV CORE ONTOLOGY
keyClasses
Name keyClasses
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition Representative classes in the ontology
Domain omv:Ontology
Range xsd:string
Cardinality O:n
OMYV version 2.2
Comments none
Table 5.11: Property: keyClasses
status
Name status
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition The tracking information for the contents of the
ontology
Domain omv:0Ontology
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments Pre-defined values

Table 5.12: Property: status

5.1. ONTOLOGY

creationDate
Name creationDate
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category General information
Definition Date when the ontology was initially created.
Domain omv:0Ontology
Range xsd:date
Cardinality 1:1
OMYV version 0.1
Comments In case versioning information (see 4.3)
is being used, it refers to the date of creation of
this particular version. Otherwise it refers
to the date of creation of the first version of
this ontology
Table 5.13: Property: creationDate
modificationDate
Name modifiedDate
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition Date of the last modification made to the ontology.
Domain omv:0Ontology
Range xsd:date
Cardinality 0:1
OMYV version 0.1
Comments In case versioning information (see 4.3)
is being used, it is not applicable, otherwise it refers
to the date of last modification of this ontology

Table 5.14: Property: modificationDate

21

22 CHAPTER 5. OMV CORE ONTOLOGY
] hasContributor ‘
Name hasContributor
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Contributors to the creation of the ontology
Domain omv:0Ontology
Range omv:Party
Cardinality O:n
OMYV version 0.1
Comments None
Table 5.15: Property: hasContributor
hasCreator
Name hasCreator
Type ObjectProperty
Identifier
Occurrence Constraint | required
Category Provenance information
Definition Main responsible for the creation of the ontology
Domain omv:Ontology
Range omv:Party
Cardinality I:n
OMYV version 0.1
Comments None

Table 5.16: Property: hasCreator

5.1. ONTOLOGY

usedOntologyEngineeringTool

Name usedOntologyEngineeringTool
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Information about the tool used to create the ontology
Domain omv:0Ontology
Range omv:0ntologyEngineeringTool
Cardinality O:n
OMYV version 0.1
Comments See section 5.5
Table 5.17: Property: usedOntologyEngineeringTool

usedOntologyEngineeringMethodology
Name usedOntologyEngineeringMethodology
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Information about the method model used to create the ontology
Domain omv:0Ontology
Range omv:0OntologyEngineeringMethodology
Cardinality O:n
OMV version 0.1
Comments See section 5.4

Table 5.18: Property: usedOntologyEngineeringMethodology
conformsToKnowledgeRepresentationParadigm

Name conformsToKnowledgeRepresentationParadigm
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Information about the paradigm model used to create the ontology
Domain omv:0Ontology
Range omv:KnowledgeRepresentationParadigm
Cardinality O:n
OMYV version 0.1
Comments See section 5.8

Table 5.19: Property: conformsToKnowledgeRepresentationParadigm

23

24

CHAPTER 5. OMV CORE ONTOLOGY

endorsedBy ‘
Name endorsedBy
Type ObjectProperty, inverseOf (endorses)
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition The parties (i.e. organisations, people) that have
expressed support or approval to this ontology.
Domain omv:Ontology
Range omv:Party
Cardinality O:n
OMV version 0.1
Comments None
Table 5.20: Property: endorsedBy
hasDomain
Name hasDomain
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition The subject domain of the ontology
Domain omv:0Ontology
Range omv:0OntologyDomain
Cardinality O:n
OMV version 0.8
Comments Typically, the domain can refer to established topic hierarchies

such as the general purpose topic hierarchy DMOZ or the domain
specific topic hierarchy ACM for the computer science domain.
See section 5.11

Table 5.21: Property: hasDomain

5.1. ONTOLOGY

’ isOfType
Name isOfType
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition The nature of the content of the ontology
Domain omv:Ontology
Range omv:0ntologyType
Cardinality 0:1
OMYV version 0.1
Comments Pre-defined values. See section 5.2
Table 5.22: Property: isOfType
designedForOntologyTask
Name designedForOntologyTask
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition The purpose for which the ontology was originally designed
Domain omv:Ontology
Range omv:0OntologyTask
Cardinality O:n
OMYV version 0.9
Comments See section 5.10
Table 5.23: Property: designedForOntologyTask
hasFormalityLevel ‘
Name hasFormalityLevel
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition Level of formality of the ontology
Domain omv:Ontology
Range omv:FormalityLevel
Cardinality 0:1
OMYV version 0.9.1
Comments Pre-defined values. See section 5.9

Table 5.24: Property: hasFormalityLevel

25

26 CHAPTER 5. OMV CORE ONTOLOGY

knownUsage \
Name knownUsage
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition The applications where the ontology
is being used
Domain omv:0Ontology
Range xsd:string
Cardinality O:n
OMV version 2.2
Comments None
Table 5.25: Property: knownUsage
hasOntologyLanguage ‘
Name hasOntologyLanguage
Type ObjectProperty
Identifier
Occurrence Constraint | required
Category Format information
Definition The ontology language
Domain omv:0Ontology
Range omv:0OntologyLanguage
Cardinality 1:1
OMYV version 0.1
Comments Pre-defined values. See section 5.7
Table 5.26: Property: hasOntologyLanguage
hasOntologySyntax ‘
Name hasOntologySyntax
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition The presentation syntax for the ontology language
Domain omv:0Ontology
Range omv:0OntologySyntax
Cardinality 0:1
OMYV version 0.1
Comments Pre-defined values. See section 5.6

Table 5.27: Property: hasOntologySyntax

5.1. ONTOLOGY
] resourceLocator
Name resourcel.ocator
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Availability information
Definition The location where the ontology can be found.
It should be accessible via a URL. It
can be the same as the value for URI property
Domain omv:0Ontology
Range xsd:string
Cardinality In
OMYV version 0.1
Comments None
Table 5.28: Property: resourceLocator
version
Name version
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Auvailability information
Definition The version information of the ontology
Domain omv:0Ontology
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments Version information could be useful for tracking, comparing

and merging ontologies. It is highly recommended the use

of a well defined numbering schema for the version information
(e.g. X.Y.Z where X is a major release, Y is minor release

and Z is a revision number)

Table 5.29: Property: version

27

28

CHAPTER 5. OMV CORE ONTOLOGY

] hasLicense ‘

Name hasLicense

Type ObjectProperty

Identifier

Occurrence Constraint | optional

Category Availability information

Definition Underlying license model

Domain omv:0Ontology

Range omv:LicenseModel

Cardinality 0:1

OMYV version 0.1

Comments Reference to a concrete LicenseModel
Pre-defined values. See section 5.3

Table 5.30: Property: hasLicense
uselmports

Name uselmports

Type ObjectProperty

Identifier

Occurrence Constraint | optional

Category Relationship information

Definition References another ontology metadata instance that
describes an ontology containing definitions, whose
meaning is considered to be part of the meaning of the
ontology described by this ontology metadata instance

Domain omv:0Ontology

Range omv:Ontology

Cardinality O:n

OMYV version 0.1

Comments Each reference consists of a URI

Table 5.31: Property: uselmports

5.1. ONTOLOGY

hasPrior Version

Name hasPriorVersion

Type ObjectProperty

Identifier

Occurrence Constraint | optional

Category Relationship information

Definition Contains a reference to another ontology metadata instance

Domain omv:Ontology

Range omv:0Ontology

Cardinality 0:1

OMV version 0.1

Comments The ontology metadata instance which describes an
ontology that is a prior version of the ontology described by
this ontology metadata instance. It may be used to organize
ontologies by versions and is NULL for initial ontology

Table 5.32: Property: hasPriorVersion
isBackwardCompatibleWith

Name isBackwardCompatibleWith

Type ObjectProperty

Identifier

Occurrence Constraint | optional

Category Relationship information

Definition The ontology metadata instance
which describes an ontology that is a compatible prior
version of the ontology described by this ontology metadata
instance

Domain omv:0Ontology

Range omv:0Ontology

Cardinality O:n

OMV version 0.1

Comments This also indicates that all identifiers from the previous

version have the same intended interpretations in the new
version

Table 5.33: Property: isBackwardCompatibleWith

29

30 CHAPTER 5. OMV CORE ONTOLOGY
isIncompatibleWith

Name isIncompatibleWith

Type ObjectProperty

Identifier

Occurrence Constraint | optional

Category Relationship information

Definition The described ontology is a later
version of the ontology described by the metadata specified,
but is not backward compatible with it. It can be used to
explicitly state that ontology cannot upgrade to use the new
version without checking whether changes are required.

Domain omv:0Ontology

Range omv:0Ontology

Cardinality O:mn

OMYV version 0.1

Comments None

Table 5.34: Property: isIncompatibleWith
numberOfClasses

Name numberOfClasses

Type DatatypeProperty

Identifier

Occurrence Constraint | optional

Category Statistic information

Definition Number of classes in the ontology

Domain omv:0Ontology

Range xsd:unsignedLong

Cardinality 0:1

OMYV version 0.1

Comments Language specific value

Table 5.35: Property: numberOfClasses

5.1. ONTOLOGY
] numberOfProperties
Name numberOfProperties
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Statistic information
Definition Number of properties in the ontology
Domain omv:0Ontology
Range xsd:unsignedLong
Cardinality 0:1
OMYV version 0.1
Comments Language specific value
Table 5.36: Property: numberOfProperties
numberOfIndividuals ‘
Name numberOflIndividuals
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Statistic information
Definition Number of individuals in the ontology
Domain omv:0Ontology
Range xsd:unsignedLong
Cardinality 0:1
OMYV version 0.1
Comments Language specific value
Table 5.37: Property: numberOfIndividuals
numberOfAxioms
Name numberOfAxioms
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Statistic information
Definition Number of axioms in the ontology
Domain omv:Ontology
Range xsd:unsignedLong
Cardinality 0:1
OMYV version 0.1
Comments The meaning of axiom depends on the ontology language.
For instance for a RDF(S) ontology it refers to a statement
(i.e. triple) and for an OWL ontology it refers to an OWL axiom.

Table 5.38: Property: numberOfAxioms

31

32

CHAPTER 5. OMV CORE ONTOLOGY

5.2 OntologyType

This class subsumes types of ontologies according to well-known classifications in the
Ontology Engineering literature [5].

] OntologyType ‘
Name OntologyType
Type class
Identifier
Definition Categorizes ontologies
OMYV version | 0.3
Comments None
Table 5.39: Class: OntologyType
name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category General information
Definition The name by which an ontology type is formally known
Domain omv:OntologyType
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None
Table 5.40: Property: name
acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition A short name by which an ontology type is formally known
Domain omv:0OntologyType
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table 5.41: Property: acronym

5.2. ONTOLOGYTYPE

33

] description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition Free text description of an ontology type
Domain omv:0OntologyType
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments None
Table 5.42: Property: description
documentation ‘
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category General information
Definition URL for further documentation
Domain omv:0OntologyType
Range xsd:string
Cardinality 0:1
OMYV version 0.2
Comments None
Table 5.43: documentation
definedBy
Name definedBy
Type ObjectProperty, inverseOf (defines)
Identifier
Occurrence Constraint | optional
Category General information
Definition A party that defined the ontology type
Domain omv:0OntologyType
Range omv:Party
Cardinality O:n
OMYV version 0.6
Comments None

Table 5.44: definedBy

34 CHAPTER 5. OMV CORE ONTOLOGY

5.2.1 Pre-defined ontology types

Individuals of the class OntologyType refer to well-known classifications for ontolo-
gies in the literature. Currently the OMV model resorts to a classification on the generality
levels of the conceptualisation [6, 18]:

e upper level ontologies describing general, domain-independent concepts e.g. space,
time.

e core ontologies describing the most important concepts in a specific domain
e domain ontology describing some domain of the world
e task ontology describing generic types of tasks or activities e.g. selling, selecting.

e application ontology describing some domain in an application-dependent manner

The class can be extended to support additional classifications (e.g. the one in [10]).

5.3. LICENSEMODEL

35

5.3 LicenseModel

| LicenseModel
Name LicenseModel
Type class
Identifier LM
Definition A license model describing the usage conditions for an ontology
OMYV version | 0.3
Comments None
Table 5.45: Class: LicenseModel
name
Name name
Type DatatypeProperty
Identifier Used Identifier for this entity.
Occurrence Constraint | required
Category Availability information
Definition The name by which a license model is formally known
Domain omv:LicenseModel
Range xsd:string
Cardinality I:1
OMYV version 0.1
Comments None
Table 5.46: Property: name
acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Auvailability information
Definition A short name by which a license model is formally known
Domain omv:LicenseModel
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table 5.47: Property: acronym

36 CHAPTER 5. OMV CORE ONTOLOGY
] description ‘
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Availability information
Definition Descriptional free text about a license model
Domain omv:LicenseModel
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments None
Table 5.48: Property: description
documentation ‘
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Availability information
Definition URL for further documentation
Domain omv:LicenseModel
Range xsd:string
Cardinality 0:1
OMV version 0.2
Comments None
Table 5.49: documentation
specifiedBy
Name specifiedBy
Type ObjectProperty, inverseOf (specifies)
Identifier Used Identifier for this element.
Occurrence Constraint | optional
Category Availability information
Definition A party that specified the license model
Domain omv:LicenseModel
Range omv:Party
Cardinality O:n
OMYV version 0.6
Comments None

Table 5.50: specifiedBy

5.3. LICENSEMODEL 37

5.3.1 Pre-defined license models

Individuals of the class LicenseModel refer to well-known license models, such as:

e Academic Free License (AFL)

e Common Public License (CPL)

e Lesser General Public License (LGPL)

e Open Software License (OSL)

e General Public License (GPL)

e Modified BSD License (mBSD)

e IBM Public License (IBM PL)

e Apple Public Source License (APSL)

e INTEL Open Source License (INTEL OSL)
e Mozilla Public License (MPL)

e Creative Commons Licenses (CCL)

Attribution (by)
Attribution-NoDerivs (by-nd)

Attribution-NonCommercial-NoDerivs (by-nc-nd)

Attribution-NonCommercial (by-nc)

Attribution-Noncommercial-Share Alike (by-nc-sa)
Attribution-ShareAlike (by-sa)

The class can be extended to support additional classifications.

38

CHAPTER 5. OMV CORE ONTOLOGY

5.4 OntologyEngineeringMethodology

OntologyEngineeringMethodology

Name OntologyEngineeringMethodology

Type class

Identifier

Definition Information about the ontology engineering methodology
OMYV version | 0.3

Comments None

Table 5.51: Class: OntologyEngineeringMethodology

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Other
Definition The name by which a ontology engineering method is formally known
Domain omv:0OntologyEngineeringMethodology
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None
Table 5.52: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Other
Definition A short name by which a ontology engineering method is known
Domain omv:0OntologyEngineeringMethodology
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments None

Table 5.53: Property: acronym

5.4. ONTOLOGYENGINEERINGMETHODOLOGY

] description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Other
Definition Free text description of an ontology engineering method
Domain omv:0OntologyEngineeringMethodology
Range xsd:string
Cardinality 0:1
OMYV version 0.6
Comments None
Table 5.54: Property: description
documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Other
Definition URL for further documentation
Domain omv:0OntologyEngineeringMethodology
Range xsd:string
Cardinality 0:1
OMYV version 0.6
Comments None
Table 5.55: documentation
developedBy
Name developedBy
Type ObjectProperty
inverseOf (develops)
Identifier
Occurrence Constraint | optional
Category Other
Definition A party that developed the ontology engineering methodology
Domain omv:0OntologyEngineeringMethodology
Range omv:Party
Cardinality O:n
OMYV version 0.6
Comments None

Table 5.56: developedBy

39

40

CHAPTER 5. OMV CORE ONTOLOGY

5.5 OntologyEngineeringTool

] OntologyEngineeringTool

Name OntologyEngineeringTool
Type class
Identifier
Definition A tool used to create the ontology
OMV version | 0.3
Comments None
Table 5.57: Class: OntologyEngineeringTool
name ‘
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Other
Definition The name by which a tool is formally known
Domain omv:0OntologyEngineeringTool
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None
Table 5.58: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Other
Definition A short name by which a tool is known
Domain omv:0ntologyEngineeringTool
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments None

Table 5.59: Property: acronym

5.5. ONTOLOGYENGINEERINGTOOL

] description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Other
Definition Free text description of the tool
Domain omv:0OntologyEngineeringTool
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments None
Table 5.60: Property: description
documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Other
Definition URL for further documentation.
Domain omv:0OntologyEngineeringTool
Range xsd:string
Cardinality O:n
OMYV version 0.2
Comments None
Table 5.61: documentation
developedBy
Name developedBy
Type ObjectProperty
inverseOf (develops)
Identifier
Occurrence Constraint | optional
Category Other
Definition The tool developer party
Domain omv:0ntologyEngineeringTool
Range omv:Party
Cardinality O:n
OMYV version 0.4
Comments None

Table 5.62: developedBy

41

42 CHAPTER 5. OMV CORE ONTOLOGY

5.5.1 Pre-defined ontology languages

Individuals of the class OntologyEngineeringTool refer to well-known ontology
engineering tools [2], such as:

e NeOn-Toolkit

e Protégé

e SWOOP

e OntoStudio

e Altova SemanticWorks
e OilEd

e [saViz

e WebODE

e OntoBuilder

e WSMO Studio

5.6. ONTOLOGYSYNTAX

5.6 OntologySyntax

] OntologySyntax
Name OntologySyntax
Type class
Identifier
Definition Information about the syntax used by an ontology
OMV version | 0.3
Comments None
Table 5.63: Class: OntologySyntax

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Format information
Definition The name by which an ontology syntax is formally known
Domain omv:0OntologySyntax
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None

Table 5.64: Property: name
acronym

Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition A short name by which an ontology syntax is known
Domain omv:0OntologySyntax
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments None

Table 5.65: Property: acronym

43

44 CHAPTER 5. OMV CORE ONTOLOGY
] description ‘
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition Free text description of the used syntax
Domain omv:0OntologySyntax
Range xsd:string
Cardinality 0:1
OMYV version 0.6
Comments None
Table 5.66: Property: description
documentation ‘
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition URL for further documentation.
Domain omv:0OntologySyntax
Range xsd:string
Cardinality 0:1
OMYV version 0.6
Comments None
Table 5.67: documentation

developedBy
Name developedBy
Type ObjectProperty

inverseOf (develops)

Identifier
Occurrence Constraint | optional
Category Format information
Definition The party who developed the used syntax
Domain omv:0OntologySyntax
Range omv:Party
Cardinality O:n
OMYV version 0.6
Comments None

Table 5.68: developedBy

5.6. ONTOLOGYSYNTAX 45

5.6.1 Pre-defined ontology syntaxes

Individuals of the class OntologySyntax refers to well-known ontology syntax stan-
dards, such as:

e OWL-XML

e RDF/XML

The class can be extended to support additional classifications.

46

5.7 OntologyLanguage

CHAPTER 5. OMV CORE ONTOLOGY

] OntologyLanguage
Name OntologyLanguage
Type class
Identifier
Definition Information about the language in which the ontology is implemented
OMV version | 0.3
Comments None
Table 5.69: Class: OntologyLanguage
name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Format information
Definition The name by which an ontology language is formally known
Domain omv:0OntologyLanguage
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None
Table 5.70: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition A short name by which an ontology language is known
Domain omv:0OntologyLanguage
Range xsd:string
Cardinality 0:1
OMYV version 0.1
Comments None

Table 5.71: Property: acronym

5.7. ONTOLOGYLANGUAGE 47

] description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition Free text description of an ontology language.
Domain omv:0OntologyLanguage
Range xsd:string
Cardinality 0:1
OMYV version 0.6
Comments None
Table 5.72: Property: description
documentation \
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition URL for further documentation
Domain omv:0OntologyLanguage
Range xsd:string
Cardinality 0:1
OMYV version 0.6
Comments None
Table 5.73: Property: documentation

developedBy
Name developedBy
Type ObjectProperty

inverseOf (develops)
Identifier
Occurrence Constraint | optional
Category Format information
Definition The party who developed the language
Domain omv:0OntologyLanguage
Range omv:Party
Cardinality O:mn
OMYV version 0.6
Comments None

Table 5.74: Property: developedBy

CHAPTER 5. OMV CORE ONTOLOGY

48
supportsRepresentationParadigm
Name supportsRepresentationParadigm
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition The representation paradigm supported by the
ontology language
Domain omv:0OntologyLanguage
Range omv:Party
Cardinality O:mn
OMYV version 0.6
Comments None
Table 5.75: Property: supportsRepresentationParadigm
hasSyntax
Name hasSyntax
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition The syntactical alternatives of the language
Domain omv:0OntologyLanguage
Range omv:0OntologySyntax
Cardinality O:n
OMYV version 0.6
Comments None

Table 5.76: Property: hasSyntax

5.7. ONTOLOGYLANGUAGE 49

5.7.1 Pre-defined ontology languages

Individuals of the class OntologyLanguage refer to well-known ontology language
standards, such as:

e OWL

OWL-DL
e OWL-Lite

OWL-Full

DAML-OIL

RDF(S)

The class can be extended to support additional classifications.

50

CHAPTER 5. OMV CORE ONTOLOGY

5.8 KnowledgeRepresentationParadigm

KnowledgeRepresentationParadigm

Name KnowledgeRepresentationParadigm
Type class
Identifier
Definition Information about a knowledge representation paradigm a particular language

adheres to
OMYV version | 0.9.1
Comments E. g. Description Logics, Frames

Table 5.77: Class: KnowledgeRepresentationParadigm

name ‘
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Format information
Definition The name by which a KR paradigm is formally known
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 1:1
OMV version 0.9.1
Comments None
Table 5.78: Property: name
acronym

Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition A short name by which a kR paradigm is known
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 0:1
OMYV version 0.9.1
Comments None

Table 5.79: Property: acronym

5.8. KNOWLEDGEREPRESENTATIONPARADIGM 51

] description ‘
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition Free text description of the knowledge representation paradigm
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 0:1
OMYV version 0.9.1
Comments None
Table 5.80: Property: description
documentation

Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition URL for further documentation
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 0:1
OMYV version 0.9.1
Comments None

Table 5.81: documentation

specifiedBy
Name specifiedBy
Type ObjectProperty

inverseOf specifies

Identifier
Occurrence Constraint | optional
Category Format information
Definition Author of the KR paradigm
Domain omv:KnowledgeRepresentationParadigm
Range omv:Party
Cardinality O:n
OMV version 0.1
Comments None

Table 5.82: Property: specifiedBy

52 CHAPTER 5. OMV CORE ONTOLOGY

5.8.1 Pre-defined knowledge representation paradigms

In this version we foresee two main classes of KnowledgeRepresentationParadigms:

e Description Logics

e Frames

5.9. FORMALITYLEVEL 53

5.9 FormalityLevel

] FormalityLevel
Name FormalityLevel
Type class
Identifier
Definition The level of formality of an ontology
OMV version | 0.9.1
Comments According to classifications in the OE literature

Table 5.83: Class: FormalityLevel

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Applicability information
Definition The name by which this element is formally known
Domain omv:FormalityLevel
Range xsd:string
Cardinality 1:1
OMYV version 0.9.1
Comments None
Table 5.84: Property: name
description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Format information
Definition Free text description of the formality level
Domain omv:FormalityLevel
Range xsd:string
Cardinality 0:1
OMYV version 0.9.1
Comments None

Table 5.85: Property: description

54 CHAPTER 5. OMV CORE ONTOLOGY

5.9.1 Pre-defined formality levels

The pre-defined values for the formality level are based on the work presented in [8],
which classifies ontologies in a spectrum of definitions according to the detail in their
specification as: catalog, glossary, thesauri, taxonomy, frames and properties, value re-
strictions, disjointness, general logic constraints.

5.10. ONTOLOGYTASK

5.10 OntologyTask

] OntologyTask
Name OntologyTask
Type class
Identifier
Definition Information about the task the ontology was intended to be used for
OMV version | 0.9.1
Comments Super-class of classes modelling typical ontology-related tasks

Table 5.86: Class: OntologyTask

name
Name taskName
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Applicability information
Definition The name by which an ontology task is formally known
Domain omv:OntologyTask
Range xsd:string
Cardinality 1:1
OMYV version 0.9.1
Comments None

Table 5.87: Property: name

acronym

Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition A short name by which an ontology task is known
Domain omv:OntologyTask
Range xsd:string
Cardinality 0:1
OMYV version 0.9.1
Comments None

Table 5.88: Property: acronym

55

CHAPTER 5. OMV CORE ONTOLOGY

56
] description ‘
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition Free text description of the ontology task
Domain omv:0OntologyTask
Range xsd:string
Cardinality 0:1
OMYV version 0.9.1
Comments None
Table 5.89: Property: description
documentation |
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition URL for further documentation
Domain omv:0OntologyTask
Range xsd:string
Cardinality 0:1
OMYV version 0.9.1
Comments None

Table 5.90: documentation

5.10.1 Pre-defined ontology tasks

Individuals of the class Ont ologyTask refer to particular application scenarios for on-
tologies, in which the benefits of using ontologies are widely acknowledged. We differ-
entiate among the following tasks:

AnnotationTask : the ontology is used as a controlled vocabulary to annotate resources
and data. This task includes the usage of a semantically rich ontology for represent-
ing arbitrarily complex annotation statements on these resources. The task can be
performed manually or (semi-)automatically.

ConfigurationTask : the ontology is designed to provide a controlled and unambiguous
means to represent valid configuration profiles in application systems. As the aim
of the ontology is to support the operationalization of particular system-related pro-
cesses; this task is performed automatically in that the ontology is processed in an

5.10. ONTOLOGYTASK 57

automatic manner by means of reasoners or APIs.

FilteringTask : the task describes at a very general level how ontologies are applied
to refine the solution space of a certain problem, such as information retrieval or
personalization. The task is targeted at being performed semi-automatically or au-
tomatically.

IndexingTask : in this scenario, the goal of the ontology is to provide a clearly de-
fined classification and browsing structure for the information items in a repository.
Again, the task can be performed manually by domain experts or as part of an ap-
plication in an automatic or semi-automatic way.

IntegrationTask : the task characterizes how ontologies provide an integrating environ-
ment, an inter-lingua, for information repositories or software tools. In this scenario
the ontology is applied (semi-)automatically to merge between heterogeneous data
pools in the same or in adjacent domains.

MatchingTask : the goal of matching is to establish links between semantically similar
data items in information repositories. In contrast to the previous task, matching
does not include the production of a shared final schema/ontology as a result of
aggregating the matched source elements to common elements. W.r.t. the automa-
tization level the range varies from manual to fully-automatical execution.

MediationTask : the ontology is built to reduce the ambiguities between communicating
human or machine agents. It can act as a normative model which formally and
clearly defines the meaning of the terms employed in agent interactions. In the
context of programmed agents, the task is envisioned to be performed automatically.

QueryFormulationTask : the ontology is used in information retrieval settings as a con-
trolled vocabulary for representing user queries. Usually the task is performed au-
tomatically in that the concepts of the ontology is are listed in a query formulation
front-end in order to allow users to specifies their queries.

QueryRewritingTask : complementary to the query formulation dimension, this task
applies ontologies to semantically optimize query expressions by means of the do-
main knowledge (constraints, subsumption relations etc.) The task can be inter-
preted as a particular art of filtering information. The task is performed automati-
cally; however, it assumes the availability of patterns describing the transformations
at query level.

PersonalizationTask : the ontology is used mainly for providing personalized access to
information resources. Individual user preferences w.r.t. particular application set-
tings are formally specified by means of an ontology, which, in conjunction with
appropriate reasoning services, can be directly integrated to a personalization com-
ponent for filtering purposes. The usage of ontologies in personalization tasks might

58 CHAPTER 5. OMV CORE ONTOLOGY

be carried out in various forms, from a direct involvement of the user who manu-
ally specifies ontological concepts which optimally describe his preferences, to the
ontological modelling of user profiles.

SearchTask : the task characterizes how ontologies are used to refine common keyword-
based search algorithms using domain knowledge in form of subsumption relations.
Ontology-driven search is usually performed automatically by means of reasoning
services handling particular aspects of an ontology representation language.

5.11. ONTOLOGYDOMAIN

5.11 OntologyDomain

] OntologyDomain
Name OntologyDomain
Type OntologyDomain

Identifier

Definition | While the domain can refer to any topic ontology it is
advised to use one of the established general purpose topic
hierarchy like DMOZ or domain specific topic hierarchy like
ACM for the computer science domain. Only this way it can
ensured that meaningful information about the relation of
the domains of two separate ontologies can be deduced

Comments | None

Table 5.91: Class: OntologyDomain

URI \
Name URI
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category General information
Definition The URI of the ontology domain
Domain omv:0OntologyDomain
Range xsd:string
Cardinality 1:1
OMYV version 2.1
Comments None

Table 5.92: Property: URI

59

60

CHAPTER 5. OMV CORE ONTOLOGY

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category General information
Definition The name by which an ontology domain is formally known
Domain omv:0Ontology
Range xsd:string
Cardinality 1:1
OMYV version 2.1
Comments None

Table 5.93: Property: name

isSubDomainOf
Name isSubDomainOf
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Applicability information
Definition Specifies the domain topic of which this domain topic is a sub domain
Domain omv:0OntologyDomain
Range omv:0OntologyDomain
Cardinality O:n
OMV version 0.8
Comments Typically, the domain can refer to established topic hierarchies

such as the general purpose topic hierarchy DMOZ or the domain
specific topic hierarchy ACM for the computer science domain

Table 5.94: Property: isSubDomainOf

5.12. PARTY

5.12 Party

] Party
Name Party
Type class
Identifier
Definition A party is a person or an organisation
OMYV version | 0.4
Comments None
Table 5.95: Class: Party
isLocatedAt ‘
Name isLocatedAt
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Availability Information
Definition The geographical location of a party
Domain omv:Party
Range omv:Location
Cardinality O:n
OMYV version 0.9
Comments None

Table 5.96: Property: isLocatedAt

61

62 CHAPTER 5. OMV CORE ONTOLOGY
develops

Name develops

Type ObjectProperty, inverseOf (developedBy)

Identifier

Occurrence Constraint | optional

Category Provenance information

Definition An entity developed by a party

Domain omv:Party

Range omv:0ntologyEngineeringTool
omv:0OntologyEngineeringMethodology
omv:0OntologyLanguage
omv:0OntologySyntax

Cardinality O:n

OMYV version 2.4

Comments None

Table 5.97: Property: develops
specifies

Name specifies

Type ObjectProperty, inverseOf (specifiedBy)

Identifier

Occurrence Constraint | optional

Category Provenance information

Definition An entity specified by a party

Domain omv:Party

Range omv:LicenseModel
omv:KnowledgeRepresentationParadigm

Cardinality O:n

OMYV version 2.4

Comments None

Table 5.98: Property: specifies

5.12. PARTY

’ defines
Name defines
Type ObjectProperty, inverseOf (definedBy)
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition An entity defined by a party
Domain omv:Party
Range omv:0ntologyType
Cardinality O:n
OMYV version 0.6
Comments None

Table 5.99: Property: defines
endorses
Name endorses
Type ObjectProperty, inverseOf (endorsedBy)
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition An entity endorsed by a party
Domain omv:Party
Range omv:0Ontology
Cardinality O:n
OMYV version 2.4
Comments None
Table 5.100: Property: endorses
hasAffiliatedParty

Name hasAffiliatedParty
Type ObjectProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Another party that is affiliated with this party
Domain omv:Party
Range omv:Party
Cardinality O:n
OMYV version 0.2
Comments None

Table 5.101: Property: hasAffiliatedParty

63

64 CHAPTER 5. OMV CORE ONTOLOGY

createsOntology
Name createsOntology
Type ObjectProperty, inverseOf (hasCreator)
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition An ontology created by a party
Domain omv:Party
Range omv:0Ontology
Cardinality O:n
OMYV version 0.7
Comments None

Table 5.102: Property: createsOntology
contributesToOntology \
Name contributesToOntology
Type ObjectProperty
inverseOf (hasContributor)

Identifier
Occurrence Constraint | optional
Category Provenance information
Definition An ontology a party made contributions to
Domain omv:Party
Range omv:0Ontology
Cardinality O:n
OMYV version 0.7
Comments None

Table 5.103: Property: contributesToOntology

5.13. PERSON

5.13 Person

’ Person
Name Person
Type class
Identifier
Definition A named individual
OMYV version | 0.1
Comments Represents an individual responsible for the creation,
or contribution to an ontology
Table 5.104: Class: Person
lastName ‘
Name lastName
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Provenance information
Definition The surname of a person
Domain omv:Person
Range xsd:string
Cardinality 1:1
OMYV version 0.2
Comments None
Table 5.105: lastName
firstName ‘
Name firstName
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Provenance information
Definition The first name of a person
Domain omv:Person
Range xsd:string
Cardinality I'n
OMV version 0.2
Comments None

Table 5.106: firstname

65

66 CHAPTER 5. OMV CORE ONTOLOGY

eMail ‘
Name email
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Provenance information
Definition The email address of a person
Domain omv:Person
Range xsd:string
Cardinality I:n
OMYV version 0.1
Comments None
Table 5.107: eMail
phoneNumber ‘
Name phoneNumber
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition The phone number of a person
Domain omv:Person
Range xsd:string
Cardinality O:n
OMYV version 0.1
Comments None
Table 5.108: Property: phoneNumber
faxNumber ‘
Name faxNumber
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition The fax number of a person
Domain omv:Person
Range xsd:string
Cardinality O:n
OMYV version 0.1
Comments None

Table 5.109: faxNumber

5.13. PERSON
isContactPerson
Name isContactPerson
Type ObjectProperty, inverseOf (hasContactPerson)
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Instance is contact person of an organisation
Domain omv:Person
Range omv:0Organisation
Cardinality O:n
OMYV version 0.7
Comments None

Table 5.110: 1sC

ontactPerson

67

68

CHAPTER 5. OMV CORE ONTOLOGY

5.14 Organisation

’ Organisation
Name Organisation
Type class, subclassOf (Party)
Identifier
Definition An organisation of some kind

OMYV version | 0.6

Comments Represents social institutions such as universities, companies,
societies etc.

Table 5.111: Class: Organisation

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint | required
Category Provenance information
Definition The name by which an organisation is formally known
Domain omv:0Organisation
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None
Table 5.112: Property: name
acronym
Name acronym
Type DatatypeProperty
Identifier Used Identifier for this entity.
Occurrence Constraint | required
Category Provenance information
Definition A short name by which an organisation is known
Domain omv:0Organisation
Range xsd:string
Cardinality 1:1
OMYV version 0.1
Comments None

Table 5.113: Property: acronym

5.14. ORGANISATION

hasContactPerson
Name hasContactPerson
Type ObjectProperty, inverseOf (isContactPerson)
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition A contact person in the organisation
Domain omv:0Organisation
Range omv:Person
Cardinality O:n
OMYV version 0.6
Comments None

Table 5.114: hasContactPerson

69

70

5.15 Location

CHAPTER 5. OMV CORE ONTOLOGY

’ Location

Name Location

Type class

Identifier

Definition A location.

OMV version | 0.9

Comments The geographical location of a party. To keep things simple we use only
DatatypeProperties instead of introducing classes for country, street, etc.

Table 5.115: Class: Location

state ‘
Name state
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition The state of a country.
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMYV version 0.9
Comments None
Table 5.116: Property: state

country
Name country
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition The name of the country
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMYV version 0.9
Comments Changed the name from land to country

Table 5.117: Property: country

5.15. LOCATION

71

city
Name city
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Name of the city (and zip code).
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMYV version 0.9
Comments None

Table 5.118: Property: city
street

Name street
Type DatatypeProperty
Identifier
Occurrence Constraint | optional
Category Provenance information
Definition Name of the street and number (address).
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMYV version 0.9
Comments None

Table 5.119: Property: street

Chapter 6

OMY Extensions

The OMV core metadata is intended to evolve towards a commonly agreed scheme for
Semantic Web ontologies. In contrast to this ambitious goal we are aware that for spe-
cific domains, tasks or communities extensions in any direction might be required. These
extensions should be compatible to the OMV core, but in the same time fulfill the require-
ments of a domain, task or community-driven setting.

The character of an OMV extension is a metadata ontology itself which imports the
OMYV core ontology. There are no restricting modelling guidelines to be met. However
we provide a basic inventory of design decisions and guidelines, which are recommended
to be applied for the extension modules (see Chapter 2).

Recalling the main metadata elements of the OMV core we envision the development

of OMYV extension ontologies elaborating the aspects these elements account for: detailed
information about the knowledge representation field (represented in the OMV core by el-
ements such as KnowledgeRepresentationParadigm,
OntologyLanguage etc.), about the conceptual model of the ontology, about Ontolog-
ical Engineering methodologies or about the various ways to evaluate ontologies. Further
on, one might consider including additional extension modules, which are currently not
covered by the OMV metadata scheme, but are related to the ontology field. For exam-
ple OMV does not consider yet topics like Argumentation or Rating. Other topics not
covered in OMYV core like ontology management (Merging, Alignment, Versioning) were
eliminated from the first version of the metadata schema as a result of the requirements
analysis phase (see Chapter 3).

Some of the aforementioned extensions are currently being developed in collabora-
tion or exclusively by partner institutions. Examples of such extensions are the change
ontology, which models changes to an ontology, the mapping extension which describes
representation of mappings between heterogeneous ontologies or the multi-linguality ex-
tension [11] that models the linguistic or multi-lingual data contained in the ontology.

72

Chapter 7

Using Metadata

Metadata information can be embedded in a variety of ways in the majority of ontology
management services proposed so far. In this document we focus on the main usage
scenarios.

We identified the following roles w.r.t. developing and deploying ontology metadata
and ontologies:

e Ontology developer - The party primarily responsible for developing an ontology.
They are expected to provide the majority of the metadata information and might
use ontology metadata during ontology reuse processes.

e Ontology contributor - A party involved in an ontology development process.
They are expected to create and use metadata in the same manner as the previous
category.

e Ontology reviewer - A party responsible for evaluating an ontology. Ontology
metadata information provides them with a useful means to ease the evaluation
process. Further on, reviewers are expected to report on the reviewing process and
its results in form of an entry in the metadata extension module for evaluation.

e Ontology user - A party applying an ontology for a specific purpose. They are
expected to provide information about the application scenario in the appropriate
extension module.

73

Chapter 8

Conclusion

To conclude, reusing existing ontologies is a key issue for sharing knowledge on the Se-
mantic Web. Our contribution aims at facilitating reuse of ontologies which are previously
unknown for ontology developers by providing an Ontology Metadata Vocabulary (OMYV)
and two prototypical applications for decentralized (Oyster') and centralized (ONTHOL-
OGY?) sharing of ontology metadata based on OMV .

Next steps include the standardization of OMV on a wider scope by particularly in-
cluding non-KnowledgeWeb parties in this process, followed by a close cooperation with
tool providers for ontology engineering environments and applications providers for e.g.
ontology based search engines to enhance their tools with support for OMV. The agree-
ment and application of a standard on a global level will greatly facilitate the reuse of
ontologies for all participating parties.

Acknowledgements

This proposal is based on a huge number of discussions and many helpful arguments by
persons from academia and industry. Especially we would like to thank our colleagues
York Sure (AIFB), M. Carmen Suérez-Figueroa (UPM), Peter Haase (AIFB), Asuncién
Gomez-Pérez (UPM), Denny Vrandecic(AIFB) and Rudi Studer (AIFB). Furthermore, we
thank our partners from the EU project Knowledge Web for their supporting discussions.

Research reported in this document has been partially financed by the EU in the IST
project NeOn (IST-2006-027595) and the Network of Excellence project Knowledge Web
(FP6-507482).

Thttp://ontoware.org/projects/oyster
Zhttp://www.onthology.org

74

Bibliography

[1] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform resource identifiers (uri):
Generic syntax, 1998.

[2] Jorge Cardoso. The semantic web vision: Where are we? Intelligent Systems,
22(5):84-88, 2007.

[3] Martin J. Diirst and Michel Suignard. Internationalized resource identifiers (iris).
Internet RFC 3987, January 2005.

[4] A. Gangemi, D. M. Pisanelli, and G. Steve. An overview of the ONIONS project:
Applying ontologies to the integration of medical terminologies. Data Knowledge
Engineering, 31(2):183-220, 1999.

[5] A. Gémez-Pérez, M. Fernandez-Lépez, and O. Corcho. Ontological Engineering.
Springer, 2003.

[6] N. Guarino. Formal Ontology and Information Systems. In Proceedings of the
FOIS 98, pages 3—15, 1998.

[7] M. Klein and D. Fensel. Ontology versioning for the semantic web, 2001.

[8] O. Lassila and D. McGuinness. The role of frame-based representation on the se-
mantic web. KSL Tech Report Number KSL-01-02, 2001.

[9] A. Lozano-Tello and A. Gomez-Perez. ONTOMETRIC: A Method to Choose the
Appropriate Ontology. Journal of Database Management, 15(2), 2004.

[10] D. L. McGuinness. Ontologies Come of Age. In Spinning the Semantic Web: Bring-
ing the World Wide Web to Its Full Potential. MIT Press, 2002.

[11] E. Montiel-Ponsoda, G. Aguado de Cea, M. Sudrez-Figueroa, R. Palma, A. Gémez-
Pérez, and W. Peters. LexOMYV: an OMV extension to capture multilinguality. In
6th International Semantic Web Conference. In Workshop Ontolex07, NOV 2007.

[12] National Information Stadards Organization. Understanding metadata. NISO Press,
2004.

75

76 BIBLIOGRAPHY

[13] E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies on Ontology Reuse.
In Proceedings of the IKNOWOS International Conference on Knowledge Manage-
ment, 2005.

[14] H. S. Pinto and J. P. Martins. A methodology for ontology integration. In Proc. of
the International Conf. on Knowledge Capture K-CAPO1, 2001.

[15] T. Russ, A. Valente, R. MacGregor, and W. Swartout. Practical Experiences in Trad-
ing Off Ontology Usability and Reusability. In Proc. of the Knowledge Acquisition
Workshop (KAW99), 1999.

[16] M. K. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide,
2004. W3C Rec. 10 February 2004, available at http://www.w3.0rg/TR/
owl—-guide/.

[17] M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology Reuse and
Application. In Proc. of the Int. Conf. on Formal Ontology and Information Systems
FOIS98, 1998.

[18] Y. Wand and R. Weber. Information Systems and Conceptual Modelling: A Re-
search Agenda. Information Systems Research, 13(4), 2002.

